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Abstract – We present estimates of the p-concentration ratio for

various function spaces on different geometries including the line, the

sphere, the plane, and the hyperbolic disc, using large sieve methods.

Thereby, we focus on L1-estimates which can be used to guarantee

the reconstruction from corrupted or partial information.

I. INTRODUCTION

Consider a measure space (X,µ), a measurable subset
Ω ⊂ X and a subspace of S ⊂ Lp(X,µ). A funda-
mental quantity in mathematical signal analysis is the p-
concentration ratio, defined as

λp(Ω,S) := sup
f∈S

‖f · χΩ‖pp
‖f‖pp

. (1)

For p = 2, the study of this quantity was the cornerstone
of the body of work nowadays referred to as the ‘Bell
Lab papers’ of Landau, Slepian and Pollak, culminating in
Landau’s necessary conditions on sampling and interpola-
tion [15]. This was later extended to a variety of contexts,
including spaces of analytic functions [19], and wavelet
and Gabor spaces [10], [11].

For p = 1, λ1(Ω,S) < 1
2 implies that

‖f · χΩ‖1 <
1

2
‖f‖1, (2)

meaning that every signal f ∈ S is sparse (poorly

concentrated) in Ω. Under such conditions, a remarkable
phenomenon discovered by Logan [16], [7], holds: if we
sense a signal f corrupted by unknown noise N supported
in an unknown Ω, then f can be perfectly reconstructed as
the solution of the L1-minimization problem

f = arg min
s∈S
‖(f +N)− s‖1.

Another reconstruction scenario can be derived by general-
izing an observation of Donoho and Stark for bandlimited
discrete functions [7, Theorem 9]. In the absence of noise,
if we only sense the projection of a general f ∈ S on Ωc,
then f can be perfectly reconstructed as the solution of the
L1-minimization problem

f = arg min
s∈S
‖s‖1, subject to PΩcs = PΩcf .

The above scenarios offer the possibility of reconstructing
a function from highly incomplete information, at the cost
of obtaining a constant such that ‖f · χΩ‖1 < C‖f‖1,
with C ≤ 1

2 . This is in general extremely difficult and
the only sharp result in this direction is provided by Tao’s
uncertainty principle for signals of prime lenght [21]. In
Section 7.3 of [7], it has been suggested that considering a
random Ω, one could improve the estimate λ1(Ω,S). The
full potential of this suggestion has been later explored
in the groundbreaking papers of Donoho [9] and Candés,
Romberg and Tao [6], where it has been shown that
selecting both Ω and S randomly, one could obtain C ≤ 1

2

with high probability, under reasonable assumptions on the
measure of Ω. This lead to an intense research activity on
the topic nowadays known as Compressive Sensing [12].

We will pursue a different strategy for the estimation of the
quantity λ1(Ω,S), suggested by a ingenious application of
the large sieve principle to sparse recovery problems by
Donoho and Logan [8]. This work was inspired by the
following variation of the classical large sieve inequality,
due to Bombieri and quoted by Montgomery in [18, p.
562]. Let µ be a positive, periodic measure on the circle and



f(x) =
∑m+n
k=m+1 ake

2πikx a trigonometric polynomial.
Then the following holds for every 0 < δ ≤ 1:

‖f‖2L2[(0,1),µ] ≤
(
n+

2

δ

)(
sup
α

∫ α+δ

α

dµ

)
‖f‖2L2(0,1) . (3)

In [8], L1-versions of (3) are obtained, assuring that (2)
holds if the measure µ is sparse (low concentration on sets
[α, α+ δ]). This lead us to pursue the program of obtaining
large sieve inequalities of the Donoho-Logan type for
1 ≤ p < ∞, in several signal analytic settings where
the original large sieve methods lack key ingredients (for
instance, Beurling’s theory of extremal functions). In this
note we will outline the first results of this program. For
convenience of presentation, consider the general setting of
the first paragraph. Denote by SK the reproducing kernel
subspace of Lp(X,µ) consisting of all functions f such
that

f(x) =

∫
X

K(x, y)f(y)dµ(y), ∀x ∈ X, (4)

for some Hermitian kernel K. We assume that X is a metric
space, and that the kernel satisfies

sup
y∈X

∫
X

|K(x, y)|dµ(x) <∞.

Then, for 1 ≤ p <∞, every f ∈ SK satisfies the following
inequality:

‖f · χΩ‖pp ≤ sup
y∈X

∫
Ω

|K(x, y)|dµ(x) · ‖f‖pp. (5)

This is a simple consequence of the reproducing kernel
equation (4), since∫

Ω

|f(x)|dµ(x) ≤
∫

Ω

∫
X

|K(x, y)f(y)|dµ(y)dµ(x)

≤ sup
y∈X

∫
Ω

|K(x, y)|dµ(x) · ‖f‖1.

The statement for general 1 ≤ p < ∞ then follows from
the Riesz-Thorin theorem using the trivial observation that
‖f · χΩ‖∞ ≤ ‖f‖∞.

From inequality (5) we conclude that (2) holds as long we
can assure that

sup
y∈X

∫
Ω

|K(x, y)|dµ(x) < C ≤ 1

2
.

This is, of course, completely impossible to do in the
absence of more information. However, in several situations
where the kernel K(x, y) is explicitly known, one can

obtain large sieve type inequalities which can be used to
obtain useful estimates from (5).
We will see some examples in the sections below, where
the estimates are given in terms of a measure of the sparsity
of the set Ω involving the quantity

sup
x∈X

|Ω ∩B%(x,R)|
|B%(x,R)|

, (6)

with B%(x,R) the ball centered at x, measured in the
metric %. Here, % is fine tuned to the underlying geometry
of the space X , and R is chosen according to the space
SK . If the p-concentration ratio is estimated by a constant
times the expression in (6), it follows that functions in SK
cannot be well concentrated on ’sparse’ sets, i.e. on sets
that are of small size locally, and that any function in SK
can be separated from noise concentrated on such a set.
We will see examples involving the line, planar euclidean,
planar hyperbolic and spherical geometries. Due to the
applications in L1-minimization, we will mostly focus on
estimates of λ1(Ω,S), but the methods we use work for
general 1 ≤ p < ∞, except for the spherical case, where
the problem for p = 1 is still open. Nevertheless, we will
also present a p = 2 large sieve bound for finite spherical
harmonic expansions, which may be useful in different
applications, taking into account the recent applications of
the p = 2 large sieve bounds in superresolution on the so
called well-separated case [17], [5].
The results are presented in the following sequence. For
reference we start with one of the Donoho-Logan’s large
sieve inequalities for band-limited functions and then
present the main result of the setting of finite spherical har-
monics expansions. We then move to phase-space contexts
and outline the results for Gabor spaces from [3], [4] and
a new result for Bergman spaces which can be translated
to the setting of Cauchy wavelets.

II. CONCRETE LARGE SIEVE INEQUALITIES

A. Donoho-Logan’s Large Sieve for the Paley-Wiener

Space

Consider the Paley-Wiener space of band-limited functions

PW p
W :=

{
f ∈ Lp(R) : supp(f̂) ⊆ [−πW, πW ]

}
,

where we use the following convention for the Fourier
transform

f̂(ω) =

∫
R
f(t)e−2πiωtdt.



In [8], Donoho and Logan introduced the following notion
of maximum Nyquist density:

ρR(Ω,W ) = |W | · sup
t∈R

∣∣Ω ∩ [t, t+ 1/W ]
∣∣,

and obtained the large sieve inequality

‖f · χΩ‖1 ≤
π

2
· ρR(Ω,W ) · ‖f‖1, ∀f ∈ PW 1

W .

This shows that ρR(Ω,W ) < 1
π is enough to assure perfect

recovery in the context outlined in the introduction. The
results in [8] also cover discrete settings and applications
of the p = 2 inequality.

B. Finite Spherical Harmonics Expansions

Let S2 be the unit sphere in R3 and SL be the space of
finite spherical harmonics expansions of maximum degree
L, i.e. if Y ml denotes the spherical harmonics, then

SL :=
{
f : S2 → C : f =

L∑
l=0

l∑
m=−l

aml Y
m
l , aml ∈ C

}
.

Estimates for the p-concentration problem are of particular
interest for example in geo-sciences where measurements
like satellite images, or weather data are not available on
the whole sphere. The Bell-Lab approach to concentration
in SL has numerically been applied in [20].
The maximum Nyquist density on S2, tailored to SL is
defined as

ρS2(Ω, L) = sup
x∈S2

|Ω ∩BS2(x, tL,L)|
|BS2(x, tL,L)|

, (7)

where the area | · | is measured w.r.t. the shift invariant
surface measure, tL,L denotes the largest zero of the
Legendre polynomial PL, and BS2(x, tL,L) denotes the
spherical cap with angle arccos tL,L centered at x ∈ S2.
Note that tL,L is an increasing sequence converging to 1.
In [14] estimates for the p-concentration problem are given
for 1 < p < ∞. In particular, the result in the Hilbertian
case reads:

λ2(Ω,SL) ≤ AL · ρS2(Ω, L), (8)

where

AL := (1− tL,L)

(∫ 1

tL,L

P 2
L(t)dt

)−1

, L = 1, 2, . . . ,

is optimal within the chosen approach. The sequence AL
is convergent with limit

lim
L→∞

AL = J1(j0,1)−2 ≈ 3.71038068570948,

where jα,m denotes the m-th positive zero of the Bessel
function of the first kind Jα.

C. Large Sieve Principles for Gabor Spaces

Let z = (x, ω) ⊂ R2, and define the time frequency shift
π as π(z)f(t) = e2πiωtf(t − x). The short-time Fourier
transform (STFT) is defined as

Vgf(z) = 〈f, π(z)g〉 =

∫
R
f(t)e−2πiωtg(t− x)dt.

Hereafter, we restrict the choice of windows g to the class
of Hermite functions hr, and define the planar maximum
Nyquist density as

ρR2(Ω, R) := sup
z∈R2

|Ω ∩BR2(z,R)|
|BR2(z,R)|

. (9)

The main result of [3], [4] (where it is actually proved for
1 ≤ p <∞) is the following:

Theorem 1: Let Ω ⊂ R2 and Vhrf ∈ L1(R2). For every
0 < R <∞, and every r ∈ N0,

‖Vhrf · χΩ‖1 ≤
πR2

Cr(R)
· ρR2(Ω, R) · ‖Vhrf‖1, (10)

with Cr(R) = 1 − Pr(R)e−πR
2

, and Pr a polynomial of
degree 2r satisfying Pr(0) = 1, and P0 ≡ 1.

The result crucially relies on the following local reproduc-
ing formula

Vhrf(z) =
1

Cr(R)

∫
BR2 (z,R)

Vhrf(w)〈π(w)hr, π(z)hr〉dw,

which is shown in [4] via the correspondence between the
STFT with Hermite windows and polyanalytic Bargmann-
Fock spaces [1].

As an illustrative application of the above theorem in the
case r = 0, i.e. the case of Gaussian window ϕ = h0,
suppose that one observes only the time-frequency content
of a STFT outside a region Ω, H := PΩcVϕf ∈ L1(R2),
and that Ω satisfies ρR2(Ω, R) < (1 − e−πR

2

)/(2πR2).
Then:

Vϕf = argmin
Vϕg∈L1(R2)

∥∥Vϕg∥∥1
, subject to PΩc (Vϕg) = H .

D. The Hyperbolic Case: Bergman Spaces and Analytic

Wavelets

Let %D denote the pseudohyperbolic metric in the disc D

%D(w, z) =

∣∣∣∣ w − z1− wz

∣∣∣∣ ,



and let BD(z,R) be the pseudohyperbolic ball of center
z ∈ D and radius R < 1 defined as BD(z,R) =

{w ∈ D : %D(w, z) < R}. Moreover, we define the hyper-
bolic measure of a set Ω as

|Ω|D :=

∫
Ω

(1− |z|2)−2dz.

The Bergman space Apα(D) [13] on the unit disc is defined
as the space of all analytic functions F on D such that

‖F‖p
Apα(D)

=
1

π

∫
D
|f(z)|p (1− |z|2)α−2 dz <∞.

The reproducing kernel of A2
α(D) is given by

KαD(z, w) = (1− zw)−α.

One can define a hyperbolic maximum Nyquist density as

ρD(Ω, R) := sup
z∈D

|Ω ∩BD(z,R)|D
|BD(z,R)|D

.

It is then possible to obtain a hyperbolic analogue of (10).
Theorem 2: Let Ω ⊂ D and F ∈ A1

α(D). For every R < 1,

‖F · χΩ‖A1
α(D) ≤ 2

C0(R)

Cα(R)
· ρD(Ω, R) · ‖F‖A1

α(D), (11)

where Cα(R) = 1
α−1

(
1− (1−R2)α−1

)
.

The following local reproducing formula obtained by Seip
[19, Theorem 2.6] plays a key role in the proof:

f(z) =
1

Cα(R)

∫
BD(z,R)

f(z)KαD(z, w)(1− |w|2)α−2 dw.

For p = 2, the Bergman space A2
α(D) is conformally

equivalent to the Bergman space on the upper half-plane
A2
α(C+). The spaces Apα(C+) can be understood, up to

a weight, as the phase space of a continuous wavelet

transform with analyzing wavelets of the form

ĝα(ξ) :=
2(α−1)/2

Γ(α− 1)1/2
ξ(α−1)/2e−ξχ[0,∞)(ξ).

In that case, using the conformal map between D and C+,
the reproducing formula (II-D) can be moved to A1

α(C+)

and an equivalent estimate as (11) can be shown. Details
will be given elsewhere, together with the extension to the
class of wavelets which have phase space representations
in polyanalytic Bergman spaces [2].
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