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I. INTRODUCTION

In this paper we apply the approximation theoretic notion of

norming set (in particular, of “polynomial norming mesh”) on

a multidimensional compact set K within the statistical theory

of optimal polynomial regression designs on K . Moreover, we

propose an approach to reduce the sampling cardinality, based

on a recent implementation of Tchakaloff-like quadrature.

We shall denote by P
d
n(K) be the space of polynomials

of total degree not greater than n restricted to a compact set

K ⊂ R
d, and by ‖f‖Y the sup-norm of a bounded function on

the compact set Y . We recall that a polynomial norming mesh

on K (with constant c > 0), hereafter simply called “norming

mesh”, is a sequence of norming subsets Xn ⊂ K such that

‖p‖K ≤ c ‖p‖Xn
, ∀p ∈ P

d
n(K) , card(Xn) = O(Ns) , (1)

where s ≥ 1 and N = Nn(K) = dim(Pd
n(K)). Observe that

necessarily card(Xn) ≥ N , since Xn is P
d
n(K)-determining.

On the other hand, N = O(nβ) with β ≤ d, in particular

N =
(

n+d
d

)

∼ nd/d! on polynomial determining compact sets

(i.e., polynomials vanishing there vanish everywhere in R
d),

but we can have β < d for example on compact algebraic

varieties, like the sphere in R
d where N =

(

n+d
d

)

−
(

n−2+d
d

)

.

We recall that norming meshes can be computed on a wide

family of compact sets, containing for example all compact

sets satisfying a Markov polynomial inequality, in particular

all compact sets with Lipschitz boundary. Norming meshes

with O(N) cardinality, often called “optimal”, are known for

several classes of compact sets, for example polytopes and

smooth bodies, cf. [13], [15]. It is also worth recalling that

norming meshes are preserved by affine transformations, and

can be incrementally constructed by finite unions and products;

cf. the seminal paper [8].

Norming meshes give good discrete models of a compact

set for polynomial fitting, for example it is easily seen that

the uniform norm of the (unweighted) Least Squares operator

on a norming mesh, say Ln : C(K) → P
d
n(K), fulfills the

estimate

‖Ln‖ = sup
f 6=0

‖Lnf‖K
‖f‖K

≤ c
√

card(Xn) . (2)

In addition, norming meshes play a role in the computation of

good interpolations sets of Fekete and Leja type, and have

been applied in the fields of polynomial optimization and

pluripotential numerics; cf., e.g., [5], [16], [18], [19].

The problem of reducing the sampling cardinality keep-

ing invariant estimate (2) (Least Squares compression) has

been solved in [17], via weighted Least Squares on N2n

Caratheodory-Tchakaloff points extracted from the norming

mesh by Linear or Quadratic Programming. Nevertheless, also

reducing the Least Squares uniform operator norm, though

much more costly is important in applications, and this will

be addressed in the next section via the theory of optimal

designs.

II. NEAR OPTIMAL DESIGNS BY NORMING MESHES

In statistics a design is a probability measure µ supported

on a (discrete or continuous) compact set K ⊂ R
d. The

search for designs that optimize some property of statistical

estimators (optimal designs) began at least one century ago;

the corresponding literature is so vast and still growing that we

can not even attempt any kind of survey. We may for example

quote the classical book [1] and the very recent paper [10].

Below we recall some relevant notions and results, in order

to connect the theory of optimal designs with the theory of

norming meshes.

In what follows we assume that supp(µ) is determining for

P
d(K) (the space of d-variate real polynomials restricted to

K); for a fixed degree n, we could even assume that supp(µ)
is determining for P

d
n(K). The diagonal of the reproducing

kernel for µ in P
d
n(K) (often called the Christoffel polynomial)

Kµ
n(x, x) =

N
∑

j=1

p2j(x) , (3)

where {pj} is any µ-orthonormal basis of P
d
n(K), plays a

key role in the theory of optimal designs (it can be shown



that Kµ
n(x, x) is independent of the choice of the orthonormal

basis). Indeed, a relevant property is that

‖p‖K ≤
√

max
x∈K

Kµ
n(x, x) ‖p‖L2

µ
(K) , ∀p ∈ P

d
n(K) . (4)

Now, by (3) we get immediatly
∫

K Kµ
n(x, x) dµ = N , which

implies that maxx∈K Kµ
n(x, x) ≥ N . A probability measure

µ∗ = µ∗(K) is then called a G-optimal design for polynomial

regression of degree n on K if

min
µ

max
x∈K

Kµ
n(x, x) = max

x∈K
Kµ∗

n (x, x) = N . (5)

Observe that, since
∫

K Kµ
n(x, x) dµ = N for every µ, an op-

timal design has also the following property Kµ∗

n (x, x) = N ,

µ∗ − a.e. in K .

A cornerstone of optimal design theory, the well-known

Kiefer-Wolfowitz General Equivalence Theorem [12], says

that the difficult min-max problem (5) is equivalent to the

much simpler maximization

max
µ

det(Gµ
n) , Gµ

n =

(
∫

K

qi(x)qj(x) dµ

)

1≤i,j≤N

, (6)

where Gµ
n is the Gram matrix of µ in a fixed polynomial basis

{qi} (also called the information matrix in statistics). This

kind of optimality is called D-optimality, and ensures that an

optimal measure always exists, since the set of Gram matrices

of probability measures is compact (and convex); see e.g. [1],

[2], [4] for a general proof of these results, valid for both

continuous and discrete compact sets. An optimal measure is

not unique and not necessarily discrete (unless K is discrete

itself), but an equivalent atomic optimal measure always exists

by Tchakaloff’s Theorem on positive quadratures of degree 2n
for K; cf. [20] for a general proof of Tchakaloff’s Theorem.

Moreover, it has been proved in [2], [3] that optimal designs

converge weakly as n → ∞ to the pluripotential theoretic

equilibrium measure of the compact set.

G-optimality can be interpreted in a probabilistic as well as

in a deterministic framework. From a statistical point of view,

it is the probability measure that minimizes the maximum

prediction variance by n-th degree polynomial regression, cf.

[1]. From the approximation theory point of view, denoting

by Lµ∗

n : C(K) → P
d
n(K) the corresponding weighted Least

Squares projection operator, in view of (4) and (5) for every

f ∈ C(K) we have the chain of estimates

‖Lµ∗

n f‖K√
N

≤ ‖Lµ∗

n f‖L2

µ∗
(K) ≤ ‖f‖L2

µ∗
(K) ≤ ‖f‖K , (7)

and thus ‖Lµ∗

n ‖ ≤
√
N , i.e. a G-optimal measure minimizes

(the estimate of) the weighted Least Squares operator norm.

There is a vast literature on the computation of D-optimal

designs, with many different approaches and methods. A

classical approach is given by the discretization of K and then

the D-optimization over the discrete set. In the discretization

framework, the possible role of norming meshes seems appar-

ently overlooked. A simple but meaningful result is given in

the following proposition.

Proposition 1: Let K ⊂ R
d be a compact set, admitting a

norming mesh {Xn} with constant c.
Then for every n,m ∈ N

+, the probability measure

ν = ν(n,m) = µ∗(X2mn) (8)

is a near G-optimal design on K , in the sense that

max
x∈K

Kν
n(x, x) ≤ cm N , cm = c1/m . (9)

Proposition 1 shows that norming meshes are good dis-

cretizations of a compact set for the purpose of computing

a near G-optimal measure, and that G-optimality maximum

condition (5) is approached at a rate proportional to 1/m,

since cm ∼ 1 + log(c)/m. Recalling the statistical notion of

G-efficiency on K we have

Geff(ν) =
N

maxx∈K Kν
n(x, x)

≥ c−1/m , (10)

whereas concerning the norm of the corresponding weighted

Least Squares projection operator

‖Lν
n‖ ≤

√

cm N , (11)

i.e. the discrete probability measure ν nearly minimizes (the

estimate of) such a norm.

It is worth recalling that a better rate proportional to 1/m2

can be obtained on certain compact sets, such as triangles

and quadrangles, cube, simplex, (sections of) sphere and ball,

smooth convex bodies, where low cardinality norming meshes

can be constructed via the approximation theoretic notion of

Dubiner distance and suitable geometric transformations; cf.

[6], [7], [19], [24].

III. TCHAKALOFF-LIKE DESIGN CONCENTRATION

Proposition 1 and the General Equivalence Theorem suggest

a standard way to compute near G-optimal designs. First, one

constructs a norming mesh such as X2mn, then computes a

D-optimal design for degree n on such a set by one of the

available algorithms. Observe that such designs will be in

general approximate, that is we compute a discrete probability

measure ν̃ ≈ ν such that on the norming mesh

max
x∈mesh

K ν̃
n(x, x) ≤ Ñ ≈ N (12)

(with Ñ not necessarily an integer), nevertheless estimates (9)-

(11) still hold with ν̃ and Ñ replacing ν and N , respectively.

Again, we can not even attempt to survey the vast literature

on computational methods for D-optimal designs; we may

quote among others the class of exchange algorithms and the

class of multiplicative algorithms, cf. e.g. [11], [14] and the

references therein.

Our computational strategy is roughly the following. We

first approximate a D-optimal design for degree n on the

norming mesh by a standard multiplicative algorithm, and

then we concentrate the measure via Caratheodory-Tchakaloff

compression of degree 2n, keeping the Christoffel polynomial,

and thus the G-efficiency, invariant. Such a compression is

based on a suitable implementation of a discrete version of



the well-known Tchakaloff Theorem [20], [23], which in

general asserts that any (probability) measure has a repre-

senting atomic measure with the same polynomial moments

up to a given degree, with cardinality not exceeding the

dimension of the corresponding polynomial space; for an

implementation see e.g. [17], [21] and the references therein.

In such a way we get near optimality with respect to both,

G-efficiency and support cardinality, since the latter will not

exceed N2n = dim(Pd
2n(K)).

To simplify the notation, in what follows X = X2mn, M =
card(X), w = {wi} are the weights of a probability measure

on X (wi ≥ 0,
∑

wi = 1), and Kw
n (x, x) is the corresponding

Christoffel polynomial.

The first step is the application of the standard Titterington’s

multiplicative algorithm (cf. [14]) to compute a sequence w(k)
of weight arrays

wi(k + 1) = wi(k)
K

w(k)
n (xi, xi)

N
, 1 ≤ i ≤ M , k ≥ 0 ,

(13)

where we take w(0) = (1/M, . . . , 1/M). Observe that the

weights wi(k+1) determine a probability measure on X , since

they are clearly nonnegative and
∑

i wi(k)K
w(k)
n (xi, xi) =

N . The sequence w(k) is known to converge as k → ∞, for

any initial choice of probability weights, to the weights of

a D-optimal design (with a nondecreasing sequence of Gram

determinants), cf. e.g. [11] and the references therein.

In order to implement (13), we need an efficient way to

compute the right-hand side. Denote by Vn = (φj(xi)) ∈
R

M×N the rectangular Vandermonde matrix at X in a fixed

polynomial basis (φ1, . . . , φN ), and by D(w) the diagonal

matrix of a weight array w. In order to avoid severe ill-

conditioning that may already occur for relatively low degrees,

instead of the standard monomial basis we have used the

product Chebyshev basis of the smallest box containing X ,

a choice that turns out to work effectively in multivariate

instances; cf. e.g. [5], [16], [17]. In view of the rectangular QR
factorization D1/2(w)Vn = QR with Q = (qij) orthogonal

(rectangular) and R square upper triangular, the polynomials

(p1, . . . , pN ) = (φ1, . . . , φN )R−1 form a w-orthonormal basis

and we can write

wi K
w
n (xi, xi) = wi

N
∑

j=1

p2j(xi) =

N
∑

j=1

q2ij , 1 ≤ i ≤ M .

(14)

The latter equation shows that we can update the weights at

each step of (13) by a single QR factorization, using directly

the squared 2-norms of the rows of the orthogonal matrix Q.

The convergence of (13) can be slow, but a few iterations

usually suffice to obtain a good design on X . Indeed, in all

our numerical tests with bivariate norming meshs, after 10

or 20 iterations we already get 90% G-efficiency on X , and

95% after 20 or 30 iterations; cf. Figure 1-top for a typical

convergence profile. On the other hand, 99% G-efficiency

would require hundreds, and 99.9% thousands of iterations.

When a G-efficiency very close to 1 is sought, one should

adopt one of the more sophisticated approximation algorithms

available in the literature, cf. e.g. [10], [11], [14] and the

references therein.

Though the designs given by (13) will concentrate in the

limit on the support of an optimal design, which typically is of

relatively low cardinality (with respecy to M ), the cardinality

of the support can be reduced even after a small number

of iterations by a suitable implementation of Tchakaloff’s

Theorem, that we describe below.

Let V2n ∈ R
M×N2n be the rectangular Vandermonde

matrix at X with respect to a fixed polynomial basis for

P
d
2n(X) = P

d
2n(K) (recall that the chosen norming mesh

is determining on K for polynomials of degree up to 2n),

and w the weight array of a probability measure supported

on X (in our instance, the weights produced by (13) after a

suitable number of iterations, to get a prescribed G-efficiency

on X). In this fully discrete framework Tchakaloff’s Theorem

corresponds to the existence of a sparse solution u to the

underdetermined moment system

V t
2nu = b = V t

2nw , u ≥ 0 , (15)

where b is the vector of discrete w-moments of the polynomial

basis up to degree 2n. The celebrated Caratheodory Theorem

on conical finite-dimensional linear combinations [9], ensures

that such a solution exists and has no more than N2n nonzero

components.

In order to compute a sparse solution, we can resort to

Linear or Quadratic Programming; cf. e.g. [17] for details

on both approaches. We recall here the second approach, that

turned out to be the most efficient in all the tests on bivariate

discrete measure compression for degrees in the order of tens

that we carried out, cf. [17]. It consists of seeking a sparse

solution û to the NonNegative Least Squares problem

‖V t
2nû− b‖22 = min

u≥0
‖V t

2nu− b‖22 (16)

using the Lawson-Hanson active set algorithm, that is imple-

mented for example in the Matlab native function lsqnonneg.

The nonzero components of û determine the resulting design,

whose support, say T = {xi : ûi > 0}, has at most N2n

points.

Observe that by construction K û
n(x, x) = Kw

n (x, x) on

K , since the underlying probability measures have the same

moments up to degree 2n and hence generate the same

orthogonal polynomials. Now, since

max
x∈K

Kw
n (x, x) ≤ cm max

x∈X
Kw

n (x, x) =
cmN

θ
,

where θ is the G-efficiency of w on X , in terms of G-efficiency

on K we have the estimate

Geff(û) = Geff(w) ≥
θ

cm
, (17)

cf. Proposition 1, while in terms of the uniform norm of the

weighted Least Squares operator we get the estimate

‖Lû
n‖ ≤

√

cmN

θ
. (18)



We present now a bivariate example on a nonconvex

polygon. An application of polygonal compact sets is the

approximation of geographical regions; for example, the 27-

sided polygon in Figure 1 resembling the shape of France.

The problem could be that of locating a near minimal number

of sampling stations (sensors) to reconstruct a scalar or vector

field (such as rainfall, pollutants concentration, geomagnetic

field, ...) by near optimal regression on the whole region.

With polygons we can resort to triangulation and finite

union, constructing on each triangle a norming mesh by the

Duffy transform of a Chebyshev grid of the square with

approximately (2mn)2 points; here cm = 1/ cos2(π/(2m))
for any triangle and hence by finite union for the whole

polygon, cf. [7], [8]. The results corresponding to n = 8 and

m = 5 are reported in Figure 1; all the computations have

been made in Matlab R2017b on a 2.7 GHz Intel Core i5

CPU with 16GB RAM. The whole norming mesh of about

168500 points is compressed into 153 sampling nodes and

weights (a compression ratio of 3 orders of magnitude) still

ensuring 95% G-efficiency, in about 22 seconds.
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