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Abstract—This study investigates the phase retrieval problem
for wideband signals. More precisely, we solve the following prob-
lem: given f ∈ L2(R) with Fourier transform in L2(R, e2c|x| dx)
we determine all functions g ∈ L2(R) with Fourier transform in
L2(R, e2c|x| dx), such that |f(x)| = |g(x)| for all x ∈ R. To do
so, we translate the problem into a phase retrieval problem for
functions in Hardy spaces on the disc and use the inner-outer
factorization.

Index Terms—Hardy spaces, phase retrieval

I. INTRODUCTION

The phase retrieval problem refers to the recovery of the
phase of a function f using given data on its magnitude
|f | and an a priori on f . This class of problems is widely
studied because of its various physical applications, such
as in astronomy [8], lens design [9], x-ray crystallography
[20], inverse scattering [22], and optics [23]. Other physical
examples are given in the survey articles of Klibanov et. al.
[15] and the book [11] which provide a rather comprehensive
overview of the mathematical literature on the phase retreival
problem at the time of their publication.

Recently, the phase retrieval problem has met a burst of
interest in the mathematical community due to the appearance
of new algorithms starting with the work of Candès et. al. [7]
and of Waldspurger et. al. [25]. This led to a bulk of work on
the phase retrieval problem in the discrete (finite-dimensional)
setting which is also the right setting for numerical algorithms.

However, most physical problems take naturally place in the
continuous setting. For instance, the phase retrieval problem
has been solved for 1-D band-limited functions in [1], [2],
[26], for functions in the Hardy space of the disc with a
technical restriction [5], for samples of real-valued band-
limited functions [24] and Sobolev-functions in [10], (see [3]
for more on this problem, in particular the stability of the
problem and further references). Our aim here is to investigate
the phase retrieval problem for wide-band functions, namely
functions with mildly decreasing Fourier transforms.

Before outlining our results, let us give a quick overview
of the band-limited and narrow band cases. In the mid-
1950’s, Akutowicz [1], [2] (and independently also in 1963,
Walther [26]) solved the phase retrieval problem in the class of
compactly supported functions: given a band-limited function
f ∈ L2(R) (i.e. a function with compactly supported Fourier
transform), find all band-limited functions g ∈ L2(R) such
that

|f(x)| = |g(x)| for every x ∈ R. (1)

Let us sketch the solution of this problem. The first step
consists in using the Paley-Wiener Theorem which states that

f and g extend into holomorphic functions in the plane that are
of exponential type, namely they grow like ea|z|. The second
step consists in observing that (1) is then equivalent to

f(z)f(z̄) = g(z)g(z̄) for every z ∈ C. (2)

Indeed, (2) is a reformulation of (1) when z is real and is an
equality between two holomorphic functions so that it is valid
for all z ∈ C. The final step consists in using the Hadamard
Factorization Theorem which states that holomorphic func-
tions of exponential type are essentially characterized by their
zeros. But now, as observed by Akutowicz and Walther, (2)
implies that each zero of g is either a zero of f or a complex
conjugate of a such a zero. To reconstruct g, one thus changes
arbitrarily many zeroes of f into their complex zeros in the
Hadamard factorization of g and this is called zero-flipping.

This proof has then been extended by McDonald [18]
to functions that have Fourier tranforms with very fast de-
crease at infinity, for instance, Gaussian decrease. Indeed, if
|f̂(ξ)|, |ĝ(ξ)| . e−a|ξ|
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, a > 0, then f, g extend to holomor-
phic functions of type 2 so that Hadamard factorization is still
available. Thus, the solutions are again essentially given by
zero-flipping.

This method of proof actually extends to functions that
satisfy a decay condition of the form |f̂(ξ)|, |ĝ(ξ)| . e−a|ξ|

α

,
a > 0 and α > 1 but breaks down at α = 1. It is precisely the
aim of this work to investigate the phase retrieval problem for
functions that have Fourier transform with exponential decay:
|f̂(ξ)|, |ĝ(ξ)| . e−a|ξ|. This class of functions is sometimes
called wide-band signals in the engineering community. In
this case, the functions f and g only extend holomorphically
to an horizontal strip Sa = {z ∈ C : |=(z)| < a} in the
complex plane so that (2) is only valid for z ∈ Sa. Further,
Hadamard factorization is no longer available. To overcome
these difficulties, we first reduce the problem to the Hardy
space on the disc via a conformal transform. We then exploit
the inner-outer-Blaschke factorization in the Hardy space on
the disc and finally, a new conformal transform allows us to
fully solve the wide-band phase retrieval problem.

The solution is now more evolved than the band-limited
case as, in addition to zero-flipping, the inner and the outer
part also contribute to the solution set. In future work, we will
investigate how various means that allow to reduce the solution
set in the band-limited case may also reduce the solution set
here.

This work is organized as follows. Section II is a quick
review of definitions and results on Hardy spaces. Section III
is devoted to the sketch of the solution of the phase retrieval



problem in the wide-band case. We conclude this note with
an overview of potential results that might reduce the set of
solutions.

II. PRELIMINARIES

A. Notation

For a domain Ω ⊂ C, Hol(Ω) is the set of holomorphic
functions on Ω. For F ∈ Hol(Ω) we denote by Z(F ) the set
of zeros of F , counted with multiplicity. If Ω is stable by
complex conjugation and F ∈ Hol(Ω), we denote by F ∗ the
function in Hol(Ω) defined by F ∗(z) = F (z̄). We also denote
the conjugation function by C, where C(z) = z̄ for all z ∈ C.

We also consider the unit disc D defined as D = {z ∈ C :
|z| < 1} and its boundary T defined by T = {z ∈ C : |z| =
1}. For c > 0, let Sc be the strip defined as Sc := {z ∈ C :
|Imz| < c}, and S := S1.

B. Hardy spaces on the Disc
Recall that the Hardy spaces on the disc D are defined as

H2(D) =
{
F ∈ Hol(D) : sup

0≤r<1

1

2π

∫ π

−π
|F (reiθ)|2 dθ <∞

}
,

and

H∞(D) =

{
F ∈ Hol(D) : sup

w∈D
|F (w)| <∞

}
.

We will need the following key facts on Hardy spaces.
First, every F ∈ H2(D) admits a radial limit F (eiθ) =
limr→1 F (reiθ) for almost every eiθ ∈ T (see e.g. [17, Lemma
3.10]) with F ∈ L2(T), log |F | ∈ L1(T) and such that the
Fourier coefficients satisfy F̂ (n) = 0 for n = −1,−2, ....
Furthermore [17, Section 7.6], every function F ∈ H2(D)
can be uniquely decomposed as

F = eiγBFSFOF

where eiγ ∈ T, BF is the Blaschke product formed by the
zeros of F , SF is a singular inner function, and OF is the
outer part of F . Recall that the Blaschke product is defined
for all w ∈ D as

BF (w) =
∏

α∈Z(F )

bα(w), (3)

where Z(F ) is the zero set of F repeated according to
multiplicity and

bα(w) =

w if α = 0
α

|α|
α− w
1− ᾱw

if α 6= 0
.

The singular part is given by

SF (w) = exp

(∫
T

w + eiθ

w − eiθ
dνF

(
eiθ
))

, (4)

where νF is a finite positive singular measure (with respect to
the Lebesgue measure). Finally, the outer part is determined
by the modulus of the radial limit of F

OF (w) = exp

(
1

2π

∫ π

−π

w + eiθ

w − eiθ
log |F

(
eiθ
)
| dθ

)
. (5)

C. Hardy Spaces on the Strip

There are essentially two ways of defining the Hardy space
on the strip S. On one hand we shall consider the following
Hardy spaces defined

H2(S) =
{
f ∈ Hol(S) : f ◦ φ−1 ∈ H2(D)

}
,

where φ : S −→ D is a bijective conformal mapping defined
by

φ(z) := tanh
(π

4
z
)

and ||f ||H2(S) = ||f ◦ φ−1||H2(D). It can then be shown [4,
Theorem 2.2] that H2(S) = H2

W (S) isometrically where

H2
W (S) =

{
f ∈ Hol(S) : sup

|y|<1

∫
R

|f(t+ iy)|2

|W (t+ iy)|
dt <∞

}
,

and W (z) =
1

4 cosh2(π4 z)
= πφ′(z).

Now this last space can be identified with the natural
analogue of the Hardy space on the disc:

H2
τ (S) =

{
f ∈ Hol(S) : sup

|y|<1

∫
R
|f(t+ iy)|2 dt <∞

}
.

More precisely f ∈ H2
τ (S) if and only if W 1/2f ∈ H2

W (S).
In summary,

Theorem II.1 ([4], Equation (2.1), Theorem 2.1). For f a
function on S, define the function F = (W 1/2f) ◦ φ−1 on D,
or conversely to F on D we associate f = W−1/2F ◦φ. Then
f ∈ H2

τ (S) if and only if F ∈ H2(D).

Finally, it is a direct consequence of Plancherel’s theorem
that H2

τ (S) is the space of Fourier transforms of functions in
L2(R, e2|ξ|dξ):

Theorem II.2 (Paley-Wiener on the Strip). We have f ∈
H2
τ (S) if and only if f̂ ∈ L2(R, e2|ξ|dξ).

III. PHASE RETRIEVAL IN H2(S)

A. Reduction of the Problem

In this section, we consider f, g ∈ L2(R) with
|f̂(ξ)|, |ĝ(ξ)| . e−c|ξ|, i.e. f̂ , ĝ ∈ L2(R, e2c|ξ|dξ), such
that |f(x)| = |g(x)|, for every x ∈ R. Our goal is to
determine, for a given f , all possible g’s. To do so, let us
write fc(x) = f(cx) and gc(x) = g(cx) so that fc, gc ∈ L2(R)
with f̂c, ĝc ∈ L2(R, e2|ξ|dξ) and |fc(x)| = |gc(x)| for every
x ∈ R so that it is enough to consider the case c = 1. Then,
according to Theorem II.2, f and g extend holomorphically to
S and |f(x)| = |g(x)| for every x ∈ R can be written as

f(x)f(x̄) = g(x)g(x̄) for every x ∈ R. (6)

But now, (6) is an equality between two holomorphic functions
on R so that it is valid also for all x ∈ S. In other words, we
are now trying to solve the following problem: given f ∈
H2
τ (S), find all g ∈ H2

τ (S) such that

f(z)f∗(z) = g(z)g∗(z) for every z ∈ S. (7)



It turns out that this problem is easier to solve when
transfering the problem to the disc. Multiplying by W 1/2(z)

and W 1/2(z̄) to both sides of (7), we obtain

(W 1/2f)(z)(W 1/2f)(z̄) = (W 1/2g)(z)(W 1/2g)(z̄)

for all z ∈ S. By Theorem II.1, the functions F = W 1/2f ◦
φ−1 and G = W 1/2g◦φ−1 are in H2(D). Hence, by applying
the substitution z = φ−1(w) and z̄ = φ−1(w̄) to the previous
equation, we get

F (w)F ∗(w) = G(w)G∗(w)quadfor every w ∈ D. (8)

Therefore, we have translated the equality on the strip to an
equivalent equality on the disc. Finally, we are now trying to
solve the following problem on the disc: given F ∈ H2(D),
find all G ∈ H2(D) such that (8) holds for all w ∈ D. Note
that (8) is equivalent to |F (w)|2 = |G(w)|2 for w ∈ (−1, 1).

B. Reduction to the Disc

Let F ∈ H2(D) and write F = BFSFOF with BF , SF , OF
given in equations (3), (4) and (5), respectively. The factor-
ization of F ∗ is given by

F ∗ = eiλBF∗SF∗OF∗ = eiλB∗FS
∗
FO
∗
F .

Since the factorization in H2(D) is unique, we have BF∗ =
B∗F , SF∗ = S∗F , and OF∗ = O∗F . Thus, it can be shown that
the Blaschke product in F ∗ is associated with the set Z(F ),
the singular part of F ∗ is given by the singular inner function
associated to the pullback measure C∗νF , and the outer part
of F ∗ is determined by the modulus of the radial limit of F ∗.
Using these facts, we have the following characterization of
the solutions of the equivalent problem on the disc.

Theorem III.1. Let F be in H2(D) and write F =
eiγBFSFOF be its inner-outer decomposition with γ ∈ R
and BF , SF , OF given by (3), (4), (5) respectively.

Then G ∈ H2(D) is such that |G(x)| = |F (x)| for every
x ∈ (−1, 1) if and only if the inner-outer decomposition of G,
G = BGSGOG is, up to the multiplication by a unimodular
constant, where

1) BG is the Blaschke product associated with the set A ∪
(Z(F )\A) for some A ⊂ Z(F );

2) SG is the singular inner function associated with the
positive singular measure νG = νF + ρ, where ρ is an
odd real singular measure (C∗ρ = −ρ) such that νG is
still a postive measure.

3) there exists a function U that is holomorphic in the
disc and admits a boundary value on T that satisfies
|U(eiθ)U(e−iθ)| = 1 almost everywhere on T such that
the outer part OG of G is OG = UOF .

Remark III.2. We write ρ = ρ+−ρ−, where ρ+ is the positive
part while ρ− is the negative part. Note that the positive part
and the negative part have disjoint supports. Since ρ is an
odd measure, C∗ρ = −ρ, thus ρ− = C∗ρ+. This implies that
if E = suppρ+, then E ∩ E = ∅ and Finally, for νG to be
positive, we need ρ− = C∗ρ+ ≤ νF , or equivalently, ρ+ ≤

C∗νF . This gives a constructive description of the measures
appearing in Theorem III.1(2).

The regularity of the functions U appearing in Theorem
III.1(3) depends on F . Obviously, if U ∈ H∞(D), log |U | ∈
L1(T), |U(eiθ)U(e−iθ)| = 1 a.e., then OG = UOF is an
outer part of an H2 function and thus gives rise to a solution
of the phase retrieval solution. While it is likely that this is
the best condition one can impose on U to always give rise to
a solution, for some F ’s, other U ’s may work. For instance,
when F = 1, one may take any outer U ∈ H2(D), such that
|U(eiθ)U(e−iθ)| = 1.

We can actually identify the solutions of our phase retrieval
problem on the disc in terms of a factorization. Let us consider
an analog of the result of McDonald [18, Proposition 1].

Corollary III.3. Let F,G ∈ H2(D). Then |F | = |G| on
(−1, 1) if and only if there exist u, v ∈ Hol(D) such that
F = uv and G = uv∗.

This result can be shown by further decomposing the
Blaschke products, the singular inner functions, and the outer
functions on the inner-outer factorizations of F and G given
in Theorem III.1.

C. Back to the Strip

For F ∈ H2(D) and z ∈ S, we have F (φ(z)) =
W 1/2(z)f(z) and equivalently, the unique inner-outer factor-
ization for f ∈ H2

τ (S) is given by

f(z) = eiγW (z)−1/2BF (φ(z))SF (φ(z))OF (φ(z))

for all z ∈ S and for some γ ∈ R. Note that this is well-
defined on S since W (z) = πφ′(z) 6= 0 for any z ∈ S . The
Blaschke product Bf is given by

Bf (z) = BF (φ(z)) =
∏

β∈Z(f)

bφ(β)(φ(z)), (9)

while the singular inner function Sf is given by

Sf (z) = SF (φ(z)) = exp

(∫
T

φ(z) + eiθ

φ(z)− eiθ dνF
(
eiθ
))

= exp

(∫
∂S

φ(z) + φ(ζ)

φ(z)− φ(ζ) dµf (ζ)

) (10)

for all z ∈ S, where µf = φ−1∗ νF is the pullback measure of
νF on ∂S. For the the outer part, we need to split the integral
since the upper and the lower boundaries of S are mapped to
the upper and the lower halves of T given by T+ = {z ∈
T : =z > 0} and T− = z ∈ T : =z < 0}, respectively. By
applying the substitutions eiθ = φ(x + i) on T+ and eiθ =
φ(x− i) on T−, we get

Of (z) = OF (φ(z))

= exp

(
−1
2πi

∫
R

φ(z) + φ(x+ i)

φ(z)− φ(x+ i)

φ′(x+ i)

φ(x+ i)
log |(W 1/2f)(x+ i)| dx

+
1

2πi

∫
R

φ(z) + φ(x− i)
φ(z)− φ(x− i)

φ′(x− i)
φ(x− i) log |(W 1/2f)(x− i)|dx

)
(11)



for all z ∈ S . Using equations (9), (10) and (11), we
translate Theorem III.1 to functions on H2

τ (S). Finally, by
using Theorem II.2, we go back to the initial setting of the
problem.

IV. CONCLUSION

In this paper, we have outlined the solution of the fol-
lowing phase retreival problem: given f ∈ L2(R) with f̂ ∈
L2(R, e2c|ξ|dξ) find all g ∈ L2(R) with ĝ ∈ L2(R, e2c|ξ|dξ)
such that |g(x)| = |f(x)|, for all x ∈ R. We have shown
that this problem is easier to solve by translating the initial
problem to H2(D) with the help of a conformal mapping.
With this equivalent problem, we have shown that the solution
can be characterized by the components of the inner-outer
factorization in H2(D). Each term in this factorization: the
inner part, the outer part and the Blaschke product, contribute
to the solution set. The contribution of the Blaschke part
corresponds to the zero-flipping of the band-limited case. We
have also shown that the solution can be characterized as a
product of two functions in Hol(D).

Several extensions to this problem can be considered. First
of all, one would like to only assume that |f | = |g| on
a discrete subset of R. This requires translating uniqueness
results for functions in the Hardy of the disc into uniqueness
results for functions in the Hardy space of the strip.

Further, the set of solutions is much larger than in the band-
limited case. One question one may then ask is to determine
to which extend additional constraints or additional (phase-
less) measurements may lead to uniqueness or at least to a
reduction of the set of solutions.

We have several examples in mind:
(1) Add the condition |Df | = |Dg|, where D is a difference

operator. In the band-limited case, this has been done by
McDonald [18] and the proof should also apply here.

(2) The Pauli problem: Pauli asked whether |g| = |f | and
|ĝ| = |f̂ | implies g = cf for some unimodular constant.
The first author [13] and independently Ismagilov [12]
have shown that the solution set may be arbitrarily large.
However, if one adds the condition that f̂ , ĝ should have
bounded support then one can check that the set of
solutions constructed in these papers has to be finite. Is
it possible to adapt the construction to obtain an f with
f̂ ∈ L2(R, e2c|x| dx) for which Pauli’s problem has an
uncountable set of solutions?

(3) In the spirit of what was done by Boche et. al. [5], one
may require that |f(z)| = |g(z)| for z in some curve inside
Sc. Similar ides can also be found in [14] and [6].

(4) Klibanov et. al. [15] considered the following problem:
|g| = |f | and |g+h| = |f+h| where h is a fixed reference
signal. Under certain conditions this leads to only two
solutions. Is this the case here as well ?

Finally, our original motivation stems from [16] where the
following phase retrieval problem occurs: determine all f in a
Sobolev space Hs such that (f̂)∗ = |f̂ | where ∗ means sym-
metric decreasing rearrangement. This leads naturally to the

question of extending our results to radial higher dimensional
functions.
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