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Abstract—We present our recent work on sampling along
spiral-like curves [9], and discuss the main techniques. As a first
result we give a sharp density condition for sampling on spirals in
terms of the separation between consecutive branches. We then
further show that, below this rate, the numerical stability related
to the reconstruction of compressible signals when sampled along
spirals is significantly limited by the amount of undersampling.

I. INTRODUCTION

The problem of sampling over a planar trajectory Γ can be
stated as follows: we say that Γ is sampling for a set Ω ⊂ R2

if

A‖f‖22 6
∫

Γ

|f(ξ)|2 dH1(ξ) 6 B‖f‖22, ∀f ∈ PW 2(Ω),

where A,B > 0 are constants and H1 denotes the one dimen-
sional Hausdorff (length) measure. Here, PW 2(Ω) denotes the
standard Paley-Wiener space

PW 2(Ω) = {f ∈ L2(R2) : supp(f̂) ⊂ Ω}.

Equivalently, one aims to reconstruct a function that is sup-
ported on Ω from samples of its Fourier transform taken along
a curve. This problem is relevant, for example, in magnetic
resonance imaging (MRI), where moving sensors capture the
anatomy and physiology of a patient.

For pointwise sampling the key quantity is the Beurling
density of a set [3], which measures the average number
of samples per unit volume. When dealing with continuous
trajectories, however, a more meaningful metric is the average
length covered by a curve [8], [12], as a proxy for scanning
times. On the other hand, the understanding of sampling
trajectories in terms of their length is more subtle than the
discrete case, and it is less clear what can be said in full
generality [8]. Nonetheless, for some particular cases - such as
parallel lines - it is possible to give a complete characterization
of the sampling problem. Here we give a solution for a family
curves that we call spiraling. The main two examples of such
curves are the collection of concentric circles

Oη := {(x, y) : x2 + y2 = η2k2, k ∈ N}, (I.1)

and the Archimedes spiral

Aη := {(ηθ cos 2πθ, ηθ sin 2πθ) : θ > 0}. (I.2)

η

Fig. 1. Concentric circles with separation η.

η

Fig. 2. Archimedes spiral with separation η.

Our first main result reads as follows.

Theorem I.1 ([9]). Let Ω ⊂ R2 be a convex centered
symmetric body.

(i) If diam(Ω)η < 1, then the Archimedes spiral Aη and
the collection of concentric circles Oη are sampling
trajectories for PW 2(Ω).

(ii) If diam(Ω)η > 1, then neither the Archimedes spiral Aη

nor the collection of concentric circles Oη are sampling
trajectories for PW 2(Ω).

In the reference case of the unit square Ω = [−1/2, 1/2]2,



Theorem I.1 tells us that the critical value for reconstruction
over Aη or Oη - i.e. their Nyquist rate - is η =

√
2/2.

We then consider slightly less dense spirals, and restrict
the reconstruction problem to functions that are compactly
represented in certain dictionaries. In many modern sampling
schemes, such undersampling is expected to be possible be-
cause many signals of interest are highly compressible [7].
In this direction, we obtain a result for functions obeying a
variation bound:

F(W ) := {f ∈ L2([−1/2, 1/2]2) : var(f) 6W},
where var(f) := sup{

∫
fdivh : h ∈ C1

c , ‖h‖∞ 6 1}.
Here, the resolution parameter W > 0 essentially controls
the number of active wavelet coefficients [6].

Theorem I.2 ([9]). Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and
Γ = Aη or Γ = Oη . For W > 0 set the stability margin

A(Γ,W ) := inf{‖f̂‖L2(H1|Γ) : f ∈ F(W ), ‖f‖2 = 1}.
Then there exists C > 0 such that

A(Γ,W ) 6 C(εW )−1/2(ln2(εW ) + 1), ∀W > 0. (I.3)

Roughly speaking, Theorem I.2 says that when undersam-
pling by a small factor 1−ε one can only recover functions up
to resolution W ≈ ε−1 with a stable condition number. Indeed,
if W � ε−1, then implies that there exists a signal f ∈ F(W )
with ‖f‖2 = 1 and almost vanishing measurements f̂ |Γ. See
Section IV-B for an application to wavelet-sparse signals.

II. SAMPLING SETS

A. Sampling with different norms
For 1 6 p 6∞ we define the function space

PW p(Ω) := {f ∈ Lp(Rd) : supp(f̂) ⊂ Ω}.
Here we will only consider spectra Ω that are convex centered
symmetric bodies, this is: compact, convex, symmetric with
respect to the origin and with 0 ∈ Ω◦.

A set Λ ⊂ Rd it is said to be sampling for PW p(Ω) if

‖f‖p � ‖f‖`p(Λ), f ∈ PW p(Ω),

where ‖f‖`p(Λ) =
(∑

λ∈Λ |f(λ)|p
)1/p

, if p < ∞, and
‖f‖`∞(Λ) = supλ∈Λ |f(λ)|.

We say that Λ is separated if its separation,

inf
λ,λ′∈Λ,λ6=λ′

|λ− λ′|

is positive.
We are mainly interested in the standard spaces PW 2

(Paley-Wiener) and PW∞ (Bernstein). Further, as it happen
to be, the problem of sampling in these spaces is almost
equivalent. Indeed, a slight modification of [11, Theorem 2.1]
gives:

Proposition II.1. Let Λ ⊂ Rd be a separated set, Ω ⊂ Rd a
convex centered symmetric body and ε ∈ (0, 1).

1) If Λ is sampling for PW 2(Ω), then it is sampling for
PW∞((1− ε)Ω).

2) If Λ is sampling for PW∞(Ω), then it is sampling for
PW 2((1− ε)Ω).

B. Continuous vs discrete sampling

When p = 2 and more generally when p <∞, a sampling
set for PW p must be a finite union of separated sets. On the
other hand, for PW∞ this need not be true. For example, in
this case, Λ could be the trajectory Γ of a curve.

When dealing with PW 2, however, the relation between the
discrete and continuous cases is not quite straightforward. For
that, we provide a connection of both inequalities. The result
mirrors that of [10] for sampling on the Bargmann-Fock space.

Theorem II.2 ([9]). Let Γ ⊂ Rd be a regular trajectory, and
Ω ⊂ Rd bounded with positive measure. Then Γ is a sampling
trajectory for PW 2(Ω) if and only if there exists a sampling
set Λ ⊂ Γ for PW 2(Ω).

The regularity assumptions in Theorem II.2 are rather mild;
they allow for the image of any continuous curve - and hence
in particular for Archimedes spirals and concentric circles.

C. Sufficient conditions for sampling: the gap theorem

The gap of a set Λ is defined as

gap(Λ) := sup
x∈Rd

inf
λ∈Λ
|x− λ|.

The following result is due to Beurling.

Theorem II.3 ([3], [11]). Let Λ ⊂ Rd and R > 0. If gap(Λ) <
1/(2R) then Λ is a sampling set for PW∞(B̄R/2(0)).

The usefulness of the gap condition for spiraling sampling
was first noted by Benedetto and Wu [2], in the context of
pointwise sampling. For the spiral (I.2) and the concentric
circles (I.1),

gap(Aη) = gap(Oη) = η/2, (II.1)

and hence Theorem II.3 implies that both Aη and Oη are
sampling sets for PW∞(B̄R/2(0)) whenever ηR < 1. This
leads to the proof of point (i) in Theorem I.1. Indeed, by
taking a separated subset Λ ⊂ Aη (res. Oη) we can pass from
pointwise sampling on PW∞ to pointwise sampling on PW 2

with Theorem II.1 and then to continuous sampling on PW 2

with Theorem II.2. Part 2 in Theorem I.1 is more challeng-
ing, because the theory of necessary density conditions for
pointwise sampling does not apply to the length metric [8].

D. Sets of uniqueness and Beurling’s weak limit techniques

A set Λ is said to be of uniqueness for PW p(Ω) if f ∈
PW p(Ω) with f |Λ = 0 implies f ≡ 0. For the Euclidean ball
B̄1/2τ (0) ⊂ R2, an example of a non-uniqueness set is the
collection of equispaced parallel lines

L~v,η := {t~v + τk~v⊥ : t ∈ R, k ∈ Z}, ~v ∈ S1, τ > 0,

since it is included in the zeros of sin(π/τ < x,~v⊥ >), which
is a non-trivial function in PW∞(B̄1/2τ (0)).

It is clear that all sampling sets must be of uniqueness, and
although the converse is not true, it is possible to characterize
a sampling set through the uniqueness of what are called its
weak limits. A sequence of sets {Λn}n is said to converge



weakly to Λ if: for all R, ε > 0 there exists nR,ε such that for
all n > nR,ε

Λn ∩ (−R,R)d ⊂ Λ +Bε(0),

Λ ∩ (−R,R)d ⊂ Λn +Bε(0).

We denote W (Λ) as the collection of weak limits obtained by
translates of Λ, i.e. Λ′ ∈ W (Λ) if and only if there exists a
sequence {xn}n ⊂ Rd such that Λ + xn

w−→ Λ′.

Theorem II.4 ([3, pg. 345]). Let Ω ⊂ Rd be a convex centered
symmetric body and let Λ ⊂ Rd. Then Λ is a sampling set for
PW∞(Ω) if and only if for all weak limits Λ′ ∈W (Λ), Λ′ is
a set of uniqueness for PW∞(Ω).

III. SPIRALING CURVES AND ITS NECESSARY CONDITIONS
FOR SAMPLING

We now give a concrete definition for spiraling curves. We
say that a trajectory Γ ⊂ R2 is spiraling if the following
conditions are met

1) (Escape cone). In some cone with vertex at the origin, Γ
can be parameterized in polar coordinates as

γ(θ) = ρ(θ)e2πiθ, θ ∈
⋃
k∈N

[k + β − α, k + β + α]

for some α ∈ (0, 1/4), β ∈ (0, 1), and where ρ ∈ C2.
2) (Asymptotic radial monotonicity). There exists kρ such

that for any θ ∈ [β − α, β + α] the sequence ρ(θ + k) is
strictly increasing for k > kρ.

3) (Asymptotic flatness). The curvature of γ(θ) goes to 0
when θ →∞.

4) (Asymptotic equispacing). There exist η, ρ0 > 0 such that

lim
k
ρ(k + β)− ηk = ρ0.

5) (Asymptotic velocity). There exists a direction ~d ∈ S1

non-collinear with e2πiβ such that

lim
k→+∞

γ′(k + β)

|γ′(k + β)|
= ~d.

The number τ := η

√
1−

〈
e2πiβ , ~d

〉2

is called the asymptotic
separation of Γ. For short, we say that Γ is a spiraling tra-
jectory with asymptotic velocity ~d and asymptotic separation
τ . Note that ~d and τ are not necessarily unique; indeed for
a trajectory Γ there may be several possible escape cones
and therefore different choices of asymptotic velocity and
separation.

It can be shown that the Archimedes spiral (I.2) and
the collection of concentric circles (I.1) are indeed spiraling
curves. But there is a larger array of examples, some depicted
below. Furthermore, spiraling curves are invariant under linear
invertible transformations in R2, as well as under many non-
linear ones [9].

The key to prove point (ii) in Theorem I.1 is to show that
spiraling curves have a certain collection of parallel lines as a
weak limit. More precisely:

β
α

~d

Fig. 3. Sketch of a spiraling curve inside its escape cone.

Fig. 4. A spiraling curve joining on a set of parallel segments in a plane
sector.

Lemma III.1 ([9]). Let Γ be a spiraling trajectory with
asymptotic velocity ~d and asymptotic separation τ . Then the
collection of equispaced parallel lines

L~d,τ = {t~d+ τk~d⊥ : t ∈ R, k ∈ Z}

is a weak limit of translates of Γ, i.e. L~d,τ ∈W (Γ).

Strategy of proof. The strategy to prove this lemma relies
mainly on the fact that spiraling curves tend to have curvature
zero, and so the branches of the curve inside the escape cone
converge to straight lines. Further, the direction of such lines is

Fig. 5. A spiraling curve made of concentric squares.



given by the asymptotic velocity ~d, and the separation comes
from the asymptotic equispacing η (or rather, after rotation,
from the asymptotic separation τ ). Technically, what is behind
is the Taylor expansion of degree 2 of the curve γ(θ).

Next, since we know how to determine the sampling
spectrum of parallel lines (or rather when they are sets of
uniqueness), cf. § II-D, we can then use the only if direction
in Theorem II.4 to set a necessary condition for sampling
on spiraling curves with the space PW∞. Finally, applying
Proposition II.1 - with the discrete-continuous passage of
Theorem II.2 - we obtain a necessary condition for sampling
on PW 2. Thus point (ii) of Theorem I.1 is proven.

IV. UNDERSAMPLING

A. Convergence rates for weak limits and quantitative aliasing

Let us sketch the strategy of proof of Theorem I.2. The
first step is to quantify the convergence if Lemma III.1 for the
special cases of the Archimedes spiral (I.2) and the concentric
circles (I.1).

As a second step, we exploit this information to construct
functions with moderate variation and Fourier-controlled norm
over the curve, which implies estimates on stability margins.
More precisely,

Proposition IV.1. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1),
and Γ = Aη or Γ = Oη . Then given ζ > 0, there exists
f ∈ L2([−1/2, 1/2]2) such that

1) ‖f‖2 = 1, ‖f‖∞ 6 Cε−1,
2) η−1/2‖f̂‖L2(H1|Γ) 6 ζ,
3) var(f) 6 C(ε−1ζ−2 ln4(Cζ−2) + 1),

where C > 0 is a universal constant.

Roughly, the function f in the proposition is a cut-off of the
sinus function that annihilates all the parallel lines of a weak
limit (as in the example of §II-D). Theorem I.2 then follows
by estimating the stability margin with such f .

B. Sampling wavelet-sparse signals

A more explicit result in terms of sparsity can be shown
from Theorem I.2 by working with the Haar-wavelet system
on L2([−1/2, 1/2]2). More precisely, if {hj,k}j,k is the Haar
basis, we define the sparsity classes as

ΣN,J :=

 ∑
(j,k)∈I

cj,khj,k : cj,k ∈ C,#I 6 N , 0 6 j 6 J


and the corresponding stability margin

AN,J(Γ) := inf
{
‖f̂‖L2(H1|Γ) : ‖f‖2 = 1, f ∈ ΣN,J

}
.

We then have the following result.

Theorem IV.2. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and
Γ = Aη or Γ = Oη . Then for N > 1,

AN,J(Γ) 6 KN−1/6ε−1 ln4(KN1/3),

where J = K ln(ε−1N), and K > 0 is a universal constant.

Informally, this theorem says that when undersampling by
a small factor 1− ε, one can recover at most N ≈ ε−6 Haar
coefficients with a stable condition number. Further Theorem
IV.2 complements related results that limit the wavelet-sparsity
of discrete signals that can be sampled on unions of parallel
lines [4].

The proof uses Theorem I.2 combined with the control of
the approximation of bounded variation functions by Haar
wavelets [6, Theorem 8.2].

V. CONCLUSION

We have identified the precise Nyquist rate for sampling
the Fourier transform of a compactly supported function along
a spiraling curve. Second, we showed that sampling slightly
below this rate leads to an approximate form of aliasing that
limits the possibility of effectively reconstructing compressible
signals. Heuristically, successful subsampling strategies rely
on avoiding regular patterns, and spirals are often mentioned
as viable choices [7]. Our analysis shows, however, that perfect
spirals are not adequate for significant undersampling. These
results underscore the need for a certain level of randomness
in sampling trajectories, and for the exploitation of finer multi-
scale models that apply to generic signals [1], [5].

Acknowledgments. J. L. R. gratefully acknowledges support
from the Austrian Science Fund (FWF):P 29462-N35, and
from the WWTF grant INSIGHT (MA16-053).

REFERENCES

[1] B. ADCOCK, A. C. HANSEN & B. ROMAN, The quest for optimal
sampling: computationally efficient, structure-exploiting measurements
for compressed sensing. In Compressed sensing and its applications,
Appl. Numer. Harmon. Anal., pages 143–167. Birkhäuser/Springer,
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