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ABSTRACT

Compressed sensing theory explains why LASSO programs
recover structured high-dimensional signals with minimax
order-optimal error. Yet, the optimal choice of the program’s
governing parameter is often unknown in practice. It is still
unclear how variation of the governing parameter impacts
recovery error in compressed sensing, which is otherwise
provably stable and robust. We establish a novel notion of
instability in LASSO programs when the measurement matrix
is identity. This is the proximal denoising setup. We prove
asymptotic cusp-like behaviour of the risk as a function of
the parameter choice, and illustrate the theory with numerical
simulations. For example, a 0.1% underestimate of a LASSO
parameter can increase the error significantly; and a 50%
underestimate can cause the error to increase by a factor of
109. We hope that revealing parameter instability regimes of
LASSO programs helps to inform a practitioner’s choice.

Index Terms— Compressed sensing, Sparse proximal
denoising, Parameter instability, Convex optimization, Lasso

1. INTRODUCTION

Compressed sensing (CS) is a provably stable and robust [1]
technique for simultaneous data acquisition and dimension re-
duction. Take the sparse linear model y = Ax0 where x0 ∈
RN is s-sparse. The now classical CS result [1, 2, 3, 4, 5, 6]
shows if A is suitably random and has m ≥ Cs log(N/s)
rows, then one may efficiently recover x0 from (y,A). Nu-
merical implementations of CS are commonly tied to one of
three convex `1 programs: constrained LASSO, unconstrained
LASSO, and quadratically constrained basis pursuit [7]. The
advent of suitable fast and scalable algorithms has made the
associated family of convex `1 minimization problems ex-
tremely useful in practice [7, 8, 9, 10].

Proximal denoising (PD) simplifies its CS counterpart, as
its measurement matrix is identity. PD uses convex optimiza-
tion to recover a structured signal corrupted by additive noise.
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We define three convex programs for PD: constrained proxi-
mal denoising, basis pursuit proximal denoising, and uncon-
strained proximal denoising. For greatest relevance to CS, we
assume that x0 is s-sparse, having no more than s non-zero
entries, and that y = x0 + ηz, where z iid∼ N (0, 1) and η > 0.
For τ, σ, λ > 0, respectively,

x̂(τ) := arg min
x∈RN

{
‖y − x‖22 : ‖x‖1 ≤ τ

}
(LS∗τ )

x̃(σ) := arg min
x∈RN

{
‖x‖1 : ‖y − x‖22 ≤ σ2

}
(BP∗σ)

x](λ) := arg min
x∈RN

{1

2
‖y − x‖22 + λ‖x‖1

}
. (QP∗λ)

Minimax order-optimal recovery results for CS and PD
programs rely on specific choices of the program’s governing
parameter (i.e., “using an oracle”) [1]. However, the opti-
mal choice of the parameter for these programs is generally
unknown in practice. Consequently, it is desirable that the
error of the solution exhibit stability with respect to varia-
tion of the parameter about its optimal setting. If the optimal
choice of parameter yields order-optimal recovery error, then
one may hope that a “nearly” optimal choice of parameter
admits “nearly” order-optimal recovery error, too (e.g., if the
error is no more than a multiplicative constant worse than the
optimal one). For example, if R(α) is the mean-squared error
of a convex program, with parameter α > 0, and α∗ > 0 is
the optimal parameter choice, then one may hope for smooth
dependence on α, such as

R(α) . A(α)R(α∗),

where A is a nonnegative smooth function with A(α∗) = 1.

Unfortunately, such a hope cannot be guaranteed in gen-
eral. We prove the existence of regimes in which PD pro-
grams exhibit parameter instability (PI) — small changes in
parameter values can lead to blow-up in risk. We suggest how
this behaviour provides intuition in CS for the existence of
LASSO PI regimes. Furthermore, we provide an explanation
of how PD may perform well in practical settings, despite the
existence of parameter instability regimes. This serves to dis-
ambiguate these seemingly contradictory results from those
of the immense body of work in CS. For a covering of related
work, see §2.1. Our numerical results are discussed in §3.



2. MAIN RESULTS

By “risk”, we mean the noise-normalized expected squared
error of an estimator. For x̂(τ), x](λ) and x̃(σ) the risks are

R̂(τ ;x0, N, η) =
1

η2
E‖x̂(τ)− x0‖22,

R](λ;x0, N, η) =
1

η2
E‖x](ηλ)− x0‖22,

R̃(σ;x0, N, η) =
1

η2
E‖x̃(σ)− x0‖22.

Denote ΣNs := {x ∈ RN : ‖x‖0 ≤ s} where ‖x‖0 gives
the number of non-zero entries of x, and define the following
optimally tuned worst-case risk for (LS∗τ ):

R∗(s,N) := sup
x0∈ΣN

s

R̂(‖x0‖1;x0, N, η)

= max
x0∈ΣN

s ; ‖x0‖1=1
lim
η→0

R̂(1;x0, N, η).

The second equality is proved in [11]. We use R∗(s,N) as a
benchmark, noting it is order-optimal in Proposition 3.

In (1), we show that (LS∗τ ) exhibits an asymptotic singu-
larity in the limiting low-noise regime. Namely, R̂(τ ;x0, N, η)
blows up for τ 6= ‖x0‖1. Intuitively, (LS∗τ ) is sensitive to τ
when η is small, suggesting limited empirical applicability in
the low-noise regime when ‖x0‖1 is unknown.

In (2), we show that (QP∗λ) exhibits an asymptotic
phase transition. The worst-case risk over x0 ∈ ΣNs is
minimized for parameter choice λ∗ = O(

√
log(N/s))

[12]. While λ∗ has no closed form expression, it satisfies
λ∗/
√

2 log(N)
N→∞−−−−→ 1 for s fixed [11]. Thus, we con-

sider the normalized parameter µ = λ/
√

2 log(N). The risk
R](λ;x0, N, η) is minimax order-optimal when µ > 1 and
suboptimal for µ < 1.

Lastly, we show in (3) that (BP∗σ) is poorly behaved for
all σ > 0 when x0 is very sparse. Namely, R̃(σ;x0, N, η)
is asymptotically suboptimal for any σ > 0 when s/N is
sufficiently small.

Theorem 1 (PD Asymptotic Instability). Where τ∗ = 1, and
λ(µ,N) := µ

√
2 logN ,

lim
N→∞

max
x0∈ΣN

s

‖x0‖1=1

lim
η→0

R̂(τ ;x0, N, η)

R∗(s,N)
=


∞ τ < τ∗

1 τ = τ∗

∞ τ > τ∗
(1)

lim
N→∞

sup
x0∈ΣN

s

R](λ(µ,N);x0, N, η)

R∗(s,N)
=

{
O(µ2) µ ≥ 1

∞ µ < 1

(2)

lim
N→∞

sup
x0∈ΣN

s

inf
σ>0

R̃(σ;x0, N, η)

R∗(s,N)
=∞ (3)

The proof of (1) computes an approximating sequence
R̂(τ ;x0, N, ηj) for ηj → 0. The proof of (2) obtains the
limits directly from a tractable closed form expression. The
proof of (3) proceeds by an involved geometric argument us-
ing a novel projection lemma, Lemma 4, and recent results

on local Gaussian mean width of convex polytopes [13]. Full
proofs of the results in this section may be found in an arXiv
manuscript [11]. Next, we add two clarifications. First, the
three PD programs are equivalent in a sense.

Proposition 2. For s ≥ 1, fix x0 ∈ RN and λ > 0.
Where x](λ) solves (QP∗λ), define τ := ‖x](λ)‖1 and
σ :=‖y − x](λ)‖2. Then x](λ) solves (LS∗τ ) and (BP∗σ).

However, τ and σ are functions of z, a random variable,
and this mapping may not be smooth. Thus, parameter stabil-
ity of one program is not implied by that of another.

Second, R∗(s,N) is computable up to constants. The
proof follows by [12] and standard bounds in [1].

Proposition 3. Let s ≥ 1, N ≥ 2 be integers, η > 0 and
suppose y = x0 + ηz for z ∈ RN with zi

iid∼ N (0, 1). Let
M∗(s,N) := infx∗ supx0∈ΣN

s
η−2‖x∗ − x0‖22 be the min-

imax risk over arbitrary estimators x∗ = x∗(y). There is
c, C1, C2 > 0 such that for N ≥ N0 = N0(s), with N0 ≥ 2
sufficiently large,

cs log(N/s) ≤M∗(s,N) ≤ inf
λ>0

sup
x0∈ΣN

s

R](λ;x0, N, η)

≤ C1R
∗(s,N) ≤ C2s log(N/s).

Thus, instead of R∗(s,N), in Theorem 1 we could have
normalized by any of the expressions above, because they are
asymptotically equivalent up to constants. In contrast, a con-
sequence of Proposition 3 using (3) is:

sup
x0∈ΣN

s

inf
σ>0

R̃(σ;x0, N, η) ≥ inf
σ>0

sup
x0∈ΣN

s

R̃(σ;x0, N, η)

� R∗(s,N)

Importantly, removing dependence of the parameters on the
noise destroys the equivalence attained in Proposition 2.

The next result is a projection lemma used in the proof of
(3), but we believe it is interesting in its own right. To our
knowledge it is novel. Let PC(x) := arg miny∈C ‖x − y‖2
for ∅ 6= C closed. Given z ∈ RN , the one-parameter family
zt := PtK(z) admits the ordering ‖PtK(z)‖2 ≤ ‖PuK(z)‖2
for 0 < t ≤ u <∞when 0 ∈ K ⊆ RN is closed and convex.
Consequently, the efficacy with which a PD program recovers
the 0 vector may be controlled by a program from the same
class — of note, as the three programs belong to this one pa-
rameter family for K = BN1 . The set K must be convex, but
neither symmetric nor origin-centered. It must contain the
origin in the current phrasing only.

Lemma 4 (Projection lemma). Let 0 ∈ K ⊆ Rn be closed
and convex, and fix λ ≥ 1. For z ∈ Rn,

‖PK(z)‖2 ≤ ‖PλK(z)‖2.

Remark 1. The proof examines the derivative of the function
f(t) := ‖ut‖22, where ut := tPλK(z) + (1− t)PK(z), and
yields a growth rate of this derivative at t = 0:

1

2

d

dt
f(t)

∣∣∣∣
t=0

= 〈z1, zλ − z1〉 ≥
‖zλ − z1‖22
λ− 1

.



2.1. Related work

PD is a simple model that elucidates crucial properties of
models in general [14]. As a central model for denoising,
it lays the groundwork for CS, deconvolution and inpainting
problems [15]. A fundamental signal recovery phase transi-
tion in CS is predicted by geometric properties of PD [16],
because the minimax risk for PD is equal to the statistical di-
mension of the signal class [12]. This quantity is a generalized
version of R∗(s,N) introduced above.

A sensitivity to constraint set perturbation is quantified in
[12], including an expression for right-sided stability of un-
constrained PD. Essentially, PD programs are proximal oper-
ators, a powerful tool in convex and non-convex optimization
[17, 18, 19, 20, 21]. Thus is PD interesting in its own right,
as argued in [12].

Several perspectives illuminate equivalence of the above
programs [7, 12, 19]. PD risk is considered with more general
convex constraints [22]. The risk of Unconstrained LASSO
has been connected to R](λ;x0, N, η) [23, 24].

3. NUMERICAL RESULTS

Let P ∈ {(LS∗τ ), (QP∗λ), (BP∗σ)} have solution x∗(%) where
% ∈ {τ, λ, σ} is the associated parameter. Given x0 ∈ ΣNs
and noise ηz, denote by L(%;x0, N, ηz) the loss associated to
P and define %∗ = %(x0, η) > 0 to be the value of % yielding
best risk (i.e., where EzL(%;x0, N, ηz) is minimal). We call
ρ := %/%∗ the normalized parameter for P. Note ρ = 1 is a
population estimate of the argmin of L(%;x0, N, ηẑ); by the
law of large numbers, the risk is well estimated by averag-
ing such losses over many realizations ẑ. Finally, define the
auxiliary function L(ρ;x0, N, ηẑ) := L(ρ%∗;x0, N, ηẑ).

The plots in Figures 1a, 1c and 1d visualize

L̄(ρi;x0, N, η, k) :=
1

k

k∑
j=1

L(ρi;x0, N, ηẑij)

evaluated on a grid {ρi}ni=1 of size n and plotted on a log-log
scale, where L(ρ;x0, N, ηẑ) = η−2‖x∗(%) − x0‖22. Each of
the nk realizations had ẑij ∼ N (0, 1), and x0 = N

∑s
i=1 ei

where ei is the ith standard basis vector. The grid {ρi}ni=1

was logarithmically spaced and centered about ρ(n+1)/2 = 1
for n odd. PD solutions were obtained using standard tools in
Python: sklearn’s minimize scalar function from the
optimize module was used for solving (LS∗τ ) and (BP∗σ)
[25]; solutions to (QP∗λ) were obtained via soft-thresholding.
Optimal values τ∗, λ∗ and σ∗ were determined analytically
τ∗ = ‖x0‖1 or estimated on a dense grid about an approxi-
mate optimum; initial guesses for σ∗ and λ∗ were η

√
N and√

2 log(N/s) respectively.
Parameter choices were (N, s, k, n) = (103, 20, 150, 301)

for Figure 1a demonstrating (LS∗τ ) PI in the low-noise regime.
Pronounced PI was observed for η = 10−3, wherein x0 is
well-separated from the noise: N/η ∼ 106, 109. Notably,

(LS∗τ ) PI manifests in low dimensions relative to practical
problem sizes. Moreover, cusp-like curve for (LS∗τ ) risk
supports the asymptotic singularity described by (1).

The analytic expression for R](λ; s,N) is plotted in Fig-
ure 1b for λ ∈ {1 − 10−2, 1 − 10−3, 2} [11, Prop 15]. The
reference lines y ∼ N2/5,

√
N show R](uλ̄; s,N) scales as

a power law of N for u < 1; R](2λ̄; s,N) has approximately
order-optimal growth, as per (2).

With parameters (N, s, η, k, n) = (107, 1, 1, 10, 237),
Figure 1c demonstrates (BP∗σ) suboptimality in the very
sparse regime. We limited number of realizations and grid
points due to computationally prohibitive problem size. Min-
imal average loss was significantly larger than the respective
losses for (LS∗τ ) and (QP∗λ) by a factor of 82.2, supporting
the theory. An apparent cusp-like behaviour would be an
interesting object of further study.

With (N, s, η, k, n) = (104, 2500, 233.0, 25, 401), Figure
1d demonstrates a regime exhibiting better parameter stabil-
ity. As the noise is large, this setting lies (mostly) outside the
regime in which (LS∗τ ) and (QP∗λ) exhibit PI. The signal is
not very sparse, since s/N = .25. Thus, this setting lies out-
side the regime of (BP∗σ) PI. Accordingly, smooth risk curves
are seen for (BP∗σ) and (QP∗λ). While (QP∗λ) and (BP∗σ)
appear relatively gradual, (LS∗τ ) appears at least to avoid a
cusp-like point about τ/τ∗ = 1.

4. CONCLUSIONS

We have illustrated regimes in which each program is unsta-
ble. Generally (QP∗λ) is the “safest” choice, with a well-
controlled penalty for over-guessing λ. For very sparse sig-
nals in high dimensions, (BP∗σ) is unstable. Efficacious if τ
is known exactly, (LS∗τ ) is empirically unstable except where
good recovery is unlikely anyway (high-noise). We hope this
informs practitioners about which program to use. Future
works include extending this to the CS set-up and to more
general atomic norms, some of which are in preparation by
the authors.
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