On the Transferability of Spectral Graph Filters

Ron Levie*, Elvin Isufif, and Gitta Kutyniok*
*Technische Universitit Berlin, Institut fiir Mathematik, Berlin, Germany
TDelft University of Technology, Department of Microelectronics, Delft, Netherlands.
Emails: levie@math.tu-berlin.de, E.Isufi-1@tudelft.nl, kutyniok @math.tu-berlin.de

Abstract—This paper focuses on spectral filters on graphs,
namely filters defined as elementwise multiplication in the fre-
quency domain of a graph. In many graph signal processing
settings, it is important to transfer a filter from one graph to
another. One example is in graph convolutional neural networks
(ConvNets), where the dataset consists of signals defined on
many different graphs, and the learned filters should generalize
to signals on new graphs, not present in the training set. A
necessary condition for transferability (the ability to transfer
filters) is stability. Namely, given a graph filter, if we add a
small perturbation to the graph, then the filter on the perturbed
graph is a small perturbation of the original filter. It is a common
misconception that spectral filters are not stable, and this paper
aims at debunking this mistake. We introduce a space of filters,
called the Cayley smoothness space, that contains the filters of
state-of-the-art spectral filtering methods, and whose filters can
approximate any generic spectral filter. For filters in this space,
the perturbation in the filter is bounded by a constant times the
perturbation in the graph, and filters in the Cayley smoothness
space are thus termed linearly stable. By combining stability
with the known property of equivariance, we prove that graph
spectral filters are transferable.

I. INTRODUCTION

The success of convolutional neural networks (ConvNets)
on Euclidean domains ignited an interest in recent years in
extending these methods to graph structured data. A graph
ConvNet is a mapping, that receives a signal defined over the
vertices of a graph, and returns a value in some output space. A
graph ConvNet consists of many layers of computations, where
each layer computes a set of filters of the output of the previous
layer, followed by a pointwise nonlinearity, and optionally a
pooling step and non-convolution layers. In a machine learning
setting, the general architecture of the ConvNet is fixed, but
the specific filters to use in each layer are free parameters.
In training, the filter coefficients are optimized to minimize
some loss function. In some situations, both the graph and the
signal defined on the graph are variables in the input space
of the ConvNet. In these situations, if two graphs represent
the same underlying phenomenon, and the two signals given
on the two graphs are similar in some sense, the output of
the ConvNet on both signals should be similar as well. This
property is typically termed transferability, and is an essential
requirement if we wish the ConvNet to generalize well on the
test set. Analyzing and proving transferability is the subject
of this paper.

A necessary condition of any reasonable definition of trans-
ferability is stability. Namely, given a filter, if the topology
of a graph is perturbed, then the filter on the perturbed

graph is close to the filter on the un-perturbed graph. Without
stability it is not even possible to transfer a filter from a graph
to another very close graph, and thus stability is necessary
for transferability. Previous work studied the behavior of
graph filters with respect variations in the graph. [1] provided
numerical results on the robustness of polynomial graph filters
to additive Gaussian perturbations of the eigenvectors of the
graph Laplacian. Since the eigendecomposition is not stable
to perturbations in the topology of the graph, this result does
not prove robustness to such perturbations. [2] showed that
the expected graph filter under random edge losses is equal to
the accurate output. However, [2] did not bound the error in
the output in terms of the error in the graph topology. In this
paper we show the linear stability of graph filters to general
perturbations in the topology.

There are generally two approaches to defining convolution
on graphs, both generalizing the standard convolution on
Euclidean domains [3], [4]. Spatial approaches generalize the
idea of a sliding window to graphs. Here, the main challenge
is to define a way to translate a filter kernel along the vertices
of the graph. Some popular examples of spatial methods are
[51, [6], [7]. Spectral methods are inspired by the convolution
theorem in Euclidean domains, that states that convolution in
the spatial domain is equivalent to pointwise multiplication
in the frequency domain. The challenge here is to define the
frequency domain and the Fourier transform of graphs. The
basic idea is to define the graph Laplacian, or some other
graph operator that we interpreted as a shift operator, and
to use its eigenvalues as frequencies and its eigenvectors as
the corresponding pure harmonics [8]. Decomposing a graph
signal to its pure harmonic coefficients is by definition the
graph Fourier transform, and filters are defined by multiplying
the different frequency components by different values. For
some examples of spectral methods see, e.g., [9], [10], [11],
[12]. Additional references for both methods can be found in
[4].

The great majority of researchers from the graph ConvNet
community currently focus on developing spatial methods.
One typical motivation for favoring spatial methods is the
claim that spectral methods are not transferable, and thus
do not generalize well on graphs unseen in the training set.
The goal in this paper is to debunk this misconception, and
to show that state-of-the-art spectral graph filtering methods
are transferable. This paper does not argue against spatial
methods, but shows the potential of spectral approaches to
cope with datasets having varying graphs. We would like to



encourage researches to reconsider spectral methods in such
situations. Interestingly, [13] obtained state-of-the-art results
using spectral graph filters on variable graphs, without any
modification to compensate for the “non-transferability”.

II. PRELIMINARIES
A. Spectral graph filters

Consider an undirected weighted graph G = {E,V, W},
with vertices V = {1, ..., N}, edges F, and adjacency matrix
W. The adjacency matrix W is symmetric and represents the
weights of the edges, where w,, ,,, is nonzero only if vertex n is
connected to vertex m. Consider the degree matrix D, defined
as the diagonal matrix with entries d,, , = er\nr,=1 Wy, m.-

The frequency domain of a graph is determined by choosing
a shift operator, namely a self-adjoint operator A that respects
the connectivity of the graph. As a prototypical example,
we consider the unnormalized Laplacian A = D — W,
which depends (affine) linearly on W. Other examples of
common shift operators are the normalized Laplacian A, =
I - D '/2WD~1/2, and the adjacency matrix itself. In this
paper we call a generic self-adjoint shift operator Laplacian,
and denote it by A. Denote the eigenvalues of A by {\, }_,,
and the eigenvectors by {¢, : V — C})_,. The Fourier
transform of a graph signal f : V — C is given by the vector
of frequency intensities

Ff={f ¢u))i,

where (u,v) is an inner product in CV, e.g., the standard dot
product. The inverse Fourier transform of the vector (v, )N_,
is given by

N
F(on)no1 = ) vndn.
n=1

Since {¢,})_; is an orthonormal basis, F* is the inverse of
F. A spectral graph filter G based on the coefficients (g,,)2_;
is defined by

N
Gf = gnlf én) on-

n=1

6]

Any spectral filter defined by (1) is permutation equivariant,
namely, does not depend on the indexing of the vertices. Re-
indexing the vertices in the input, results in the same re-
indexing of vertices in the output.

Spectral filters defined by (1) have two disadvantages.
First, as shown in Subsection II-B, they are not transferable.
Second, they entail high computational complexity. Formula
(1) requires the computation of the eigendecomposition of
the Laplacian A, which is computationally demanding and
can be unstable when the number of vertices NV is large.
Moreover, there is no general “graph FFT” algorithm for
computing the Fourier transform of a signal f € L?(V), and
(1) requires computing the frequency components (f, ¢,,) and
their summation directly.

To overcome these two limitations, state-of-the-art methods,
like [10], [14], [11], [12], are based on functional calculus.
Functional calculus is the theory of applying functions g :

C — C on normal operators in Hilbert spaces. In the special
case of a self-adjoint or unitary operator T with a discrete
spectrum, g(T) is defined by

g(T)f =" g(A\n) (f, bn) bn, )

for any vector f in the Hilbert space, where {\,, ¢, } is the
eigendecomposition of the operator T. The operator g(T) is
normal for general g : C — C, self-adjoint for g : C — R,
and unitary for g : C — e™® (where e® is the unit complex
circle).

Definition (2) is canonical in the following sense. In the
special case where

_ ZIL:O aX
ZZL:O di !

is a rational function, g(T') can be defined in two ways. First,
by (2), and second by compositions, linear combinations, and
inversions, as

L L .
g(T) = (chTl> (ZleZ>
1=0 1=0

It can be shown that (2) and (3) are equivalent. Moreover, def-
inition (2) is also canonical in regard to non-rational functions.
Loosly speaking, if a rational function ¢ approximates the
function g, then the operator ¢(T) approximates the operator
g9(T).

Implementation (3) overcomes the limitation of definition
(1), where now filters are defined via (2) with polynomial
or rational function g. By relying on the spatial operations of
compositions, linear combinations, and inversions, the compu-
tation of a spectral filter is carried out entirely in the spatial do-
main, without ever resorting to spectral computations. Thus, no
eigendecomposition and Fourier transforms are ever computed.
The inversions in g(T)f involve solving systems of linear
equations, which can be computed directly if NV is small, or
by some iterative approximation method for large N. Methods
like [10], [15], [8], [12] use polynomial filters, and [14], [11],
[13] use rational function filters. We term spectral methods
based on functional calculus functional calculus filters.

g(A)

3)

B. The misconception of non-transferability of spectral graph
filters

The non-transferability claim is formulated based on the
sensitivity of the Laplacian eigendecomposition to small per-
turbation in W, or equivalently in A. Namely, a small
perturbation of A can result in a large perturbation of the
eigendecomposition {\,, ¢, }N_;, which results in a large
change in the filter defined via (1). This claim was stated
in [3] only for spectral filters defined via (1), for which
it is true. However, later papers misinterpreted this claim
and applied it to functional calculus filters. The instability
argument does not prove non-transferability, since state-of-the-
art spectral methods do not explicitly use the eigenvectors,
and do not parametrize the filter coefficients g,, via the index



n of the eigenvalues. Instead, state-of-the-art methods are
based on functional calculus, and define the filter coefficients
using a function g : R — C, as g()\,,). The parametrization
of the filter coefficients by g is indifferent to the specifics
of how the spectrum is indexed, and instead represents an
overall response in the frequency domain, where the value of
each frequency determines its response, and not its index. In
functional calculus filters defined by (2), a small perturbation
of A that results in a perturbation of \,, also results in a
perturbation of the coefficients g(A,). It turns out, as we
prove in this paper, that the perturbation in g(\,) implicitly
compensates for the instability of the eigendecomposition, and
functional calculus spectral filters are stable.

III. MAIN RESULTS
A. Transferability of functional calculus filters

In this paper, we define transferability as the linear robust-
ness of the filter to re-indexing of the vertices and perturbation
of the topology of the graph. Thus, to formulate transferability,
we combine equivariance with stability. Since spectral filters
are known to be equivariant, transferability is equivalent to
stability. Thus, our goal is to prove stability.

B. Linear stability of spectral filters

Stability is proven on a dense subspace of filters in LP(R),
which we term the Cayley smoothness space. The definition of
the Cayley smoothness space is based on the Cayley transform

C:R — e™®, defined by C(z) = 2=L.

Definition 1. The Cayley smoothness space Cay!(R) is the
subspace of functions g € L?(R) of the form g(\) = q(C()\)),
where q : e® — C is in L?(e™®), and has classical Fourier
coefficients {c;}7°_ . satisfying ||g]|c == >0 U] < oo.

The mapping g — ||g|| is a seminorm. It is not difficult to
show that Cay!(R) is dense in each LP(R) space with 1 <
p < oo. Intuitively, Cayley smoothness implies decay of the
filter kernel in the spatial domain, since it models smoothness
in a frequency domain. This can be formulated rigorously for
graph filters based on Cayley polynomials (g(A\) = ¢(C(\))
with finite expansion {¢;}% ;) [11, Theorem 4].

For filters in the Cayley smoothness space we have linear
stability, which is our main contribution.

Theorem 2. Let A € CN*N be a self-adjoint matrix that we
call Laplacian. Let A" = A + E be self-adjoint, such that
|E| < 1. Let g € Cay*(R). Then
[E]
lo(a) = g@)]| < lglle (U1AT+ 1) + 1B )
:O(HA - A’H).
“)
IV. EXAMPLES
ChebNets. Consider the normalized translated Laplacian A, —
I. In ChebNets [10], g is a polynomial, and since the spectrum
of A, —Tis in [-1,1], the values of g outside [—1,1] do
not affect the filter g(A, — I). Thus, we may assume that
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Fig. 1. Average relative error in the output of the filter as a function of
the average relative error in the Laplacian, for three fixed filters: low-pass
polynomial and Cayley filters of order 3, and all-pass ARMA filter of order
3.

g is a polynomial in [—1,1], and padded outside [—1,1] to
obtain a smooth compactly supported function. It is easy to
see that such a g is in Cay'(R). Thus, for two translated
normalized Laplacians A, — I and A/, — I of two graphs,
Hg(An - I) - g(Allm - I)H = O(HAH - A;H)

General rational functions. The above claim is also true for
general rational functions, if we assume that the spectrum of
A, A’ is contained in some pre-defined band [0, M]. Thus,
the polynomial filters of [15], [12] and the ARMA rational
function filters of [14], [13] are also transferable, under the
assumption of uniformly bounded Laplacians.

CayleyNets. CayleyNets [11] are always transferable, since a
Cayley filter is by definition in Clay!(R), with finite expan-
sion.

To corroborate the proposed theoretical result, in Figure 1
we test the above three examples in the Molene weather
dataset!. The graph comprises N = 32 weather stations,
with weights given as the Gaussian of the physical distances
between stations. Each of the 744 graph signals is a tem-
perature recording. For the polynomial filter we consider
the normalized Laplacian, while for the Cayley and ARMA
filters we consider the unnormalized Laplacian. The results
are averaged over 100 different perturbations in the topology
and the 744 graph signals. The experimental results concord
with the theoretical linear stability property.

V. PROOF OF THEOREM 2
We start with a useful lemma.

Lemma 3. Suppose B,D,E € CN*¥ are matrices satisfying
B =D +E, and |B|,[D|| < C for some C > 0. Then for
every 1 > 0

B! —D'|| <ic' B (5)

Proof. Letl € N.
D'-B'=D"!'(D-B)+(D"'-B"H)B (6

SO
|ID! =B < E[|+ | D =B C.

'Access to the raw data is possible from https : //donneespubliques.
meteofrance. fr/donneeslibres/Hackathon/ RADOM EH tar.gz



Now, (5) follows by repeatedly using (7) with decreasing
powers [ —j, j=1,...,1—1. O

Next, we cite a general property from spectral theory.

Lemma 4. Let T be a bounded normal operator in a Hilbert
space. Let o be the spectrum of T. Define the infinity norm
on the space of bounded continuous functions f : o — C by

17 = 9lli = sup £ (z) = g()]
Then
IA(T) = gD = If = gllZ
where the norm in the left-hand-side is the operator norm.

To prove Theorem 2, we start with a version of the theorem
restricted to ¢ = g o C € Cay!(R) where ¢ has a finite
expansion with coefficients (¢;)%_;.

Proof of Theorem 2 for finite Cayley expansions. We  prove
for ¢ with with coefficients (¢;)f ;. The part with coefficients
(e1)%__; is treated similarly. Note that
c(a)—cA)=(A-i)(A+i) ' —(A—i)(A +i)"

(A =) (A +i) = (A i) (A i)
o)

le(a) —cal]

< [I(A =l [(a+i) " = (A" + ) [+[[(A"+ )7 IE].

By the fact that the spectrum of A’ is real,
and we have

le(a) —cal]
<(lal+D[[(A+)™ = (A + )7 + |E].
Let us bound ||(A +4)~" — (A" +i)7!|| in terms of ||E.

Since ||E|| < 1 we may expand

(A+i+E)"' =(A+i) ' I+EA+i)7)

A+ <1,

®)

-1

—(A+) 7 (YD EEA i) )
k=0
50, by H(A +z’)_1H <1,
(Al et < _El
Now, by (8) and (9),
E
Je(a) — e < QA+ nm el a0

Observe that C(A) and C(A') are unitary, so their spectrum
is bounded by C = 1. Thus, by Lemma 3 and the trian-
gle inequality on the polynomial expansions of q(C(A)) -
g(C(A").

la(a) = g(AN]| = [la(c(a)) —a(c(a)]|

L
<Y lelc(a) —cal)|
=1

which gives (4). O]

Proof of Theorem 2. Theorem 2 follows the above result by
a simple density argument. Given g = g o C € Cay*(R), we
consider the truncations g;, = qr, o C , where ¢y, is restricted
to the coefficients (¢;)£ ;. We base a three-epsilon argument
on the expansion, for any L € N,

[9(A) = g(A")|| <llg(A) — g (A)]|
+ ||9L(A) - gL(A/)H
+[lgz(A") —g(A")]].
For any ¢ > 0, by Lemma 4, the first and the last terms of

the right-hand side of 11 can be made smaller than €/2 by
choosing L large enough. Moreover, for any L € N,

L e}
lgzle =D tal< > tal=lgle,

I=—1 l=—c0

(11)

s0, by Theorem 2 for finite Cayley expansions, for every € > 0

E|

A) —g(AN] < A 1 Hi E .

lo(a) = g(a)| < lglle (AT +1)g g +IBI) + e
(12)

Since (12) is true for every € > 0, we must have (4). O
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