Numerical computation of eigenspaces of spatio-spectral limiting on hypercubes

Jeffrey A. Hogan
School of Mathematical and Physical Sciences
University of Newcastle
Callaghan NSW 2308
Australia
jeff.hogan@newcastle.edu.au

Joseph D. Lakey
Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003-8001
USA
jlakey@nmsu.edu.au

Abstract

Hypercubes \mathcal{B}_{N} are Cayley graphs of groups \mathbb{Z}_{2}^{N}. Spatio-spectral limiting on \mathcal{B}_{N} refers to truncation to the path neighborhood of a vertex, followed by projection onto small eigenmodes of the graph Laplacian. We present a method to compute eigenspaces of spatio-spectral limiting on \mathcal{B}_{N} leveraging recent work of the authors that provides a geometric identification of the eigenspaces.

I. Introduction

This work outlines a method to compute eigen decompositions of spatio-spectral limiting on hypercubes. Spatiospectral limiting on a graph refers to truncation to a neighborhood of a vertex followed by restriction to a subset of eigenvectors of an appropriate analogue of the Fourier transform. On the real line (and discrete-periodic settings) this is known as time and band limiting, e.g., [1]-[6], [7]-[11]. Extensions to other settings including spheres, e.g., Simons et al., [12], [13] and locally compact abelian groups, e.g., Zhu and Wakin [14] have been studied recently.

Fourier transforms and bandlimiting operators have been studied recently in the setting of graphs $G=(V, E)$ [15][17]; connections with sampling have been made [18]-[21] and some initial, general studies of spatio-spectral limiting on graphs have been done [22], [23]. The goal here is to study some computational aspects of spatio-spectral limiting on hypercubes \mathcal{B}_{N}, which are Cayley graphs of the groups \mathbb{Z}_{2}^{N}. The space-limiting and spectral-limiting operators are respectively sparse and full matrices in the standard basis. They do not commute, and computing the singular value decomposition of their composition (product) is infeasible except for small N, because of the size 2^{N} of the matrix and, potentially, because the eigenvectors may not be well separated: eigenvalues have large multiplicities; also, some approximate eigenvalues cannot be separated. An initial study was made in [24]. In [25], eigenvectors of spatio-spectral limiting on \mathcal{B}_{N} were identified in a manner that, in principal, leads to computation of eigenvectors and eigenvalues for reasonably large N by representing eigenspaces in terms of ranges of certain $N \times N$ matrices that represent the spatiospectral limiting operator. These matrices are not self-adjoint. A bigger problem is that they are poorly conditioned. Their
978-1-4673-7353-1/15/\$31.00 © 2015 IEEE
eigen-decompositions cannot be computed accurately by standard methods even for N on the order of twenty. This does not necessarily prohibit accurate numerical computation of eigenvectors and eigenvalues: it just means that approximation methods need to be tailored to the specific form of the matrices.

Here we present technical apparatus to make numerical computation of eigenvectors and eigenvalues of spatio-spectral limiting on \mathcal{B}_{N} feasible. First we review briefly the reduction of the spatio-spectral limiting operator on \mathcal{B}_{N}, which we denote by $B P Q P$, on invariant subspaces to certain $N \times N$ matrices and outline briefly issues with computation of the matrices. Next we discuss a certain tridiagonal matrix reduction of a Boolean difference operator (3) analogue of the so-called prolate differential operator [11, p. 6] that arguably almost commutes with the spatio-spectral limiting operator on \mathcal{B}_{N} (the prolate differential operator on \mathbb{R} actually commutes with time and band limiting-denoted by $P Q P$-on \mathbb{R}) and thereby provides effective means to compute the eigenvectors of $B P Q P$. On \mathcal{B}_{N}, The eigenvectors of this tridiagonal matrix are simple to compute and provide effective seed vectors for a version of the power method to compute eigenvectors of a corresponding $N \times N$ representation of the Boolean analogue of the time and bandlimiting operator. For a self-adjoint matrix, one version of the power method effectively starts with random orthogonal seeds, and iteratively applies the matrix, followed by orthogonal projection onto prior eigenvectors, and renormalization, until a convergence criterion is satisfied. Preferably the seeds are, in a sense, close to the target vectors. We argue that eigenvectors of BDO are effective seeds for eigenvectors of BPQP. Since our matrices are not self-adjoint, their eigenvectors are not orthogonal and the power method has to be adapted accordingly. It turns out that, for different eigenvalues, the eigenvectors of the matrices corresponding to BDO and BPQP are orthogonal with respect to a certain weighted inner product, which allows for application of a simple variant of the power method. As indicated, computing the matrix corresponding to BPQP in floating point is problematic. This is because entries are represented through N-term products of matrices with entries ranging on orders from $1 / N$ to N, and the product has entries ranging on order of N^{-N} to
N^{N}. However, when the products are applied factor by factor to an approximate eigenvector, floating point errors appear not to be drastic. Examples are provided. The presentation is outlined as follows.

II. Definition of Boolean hypercubes \mathcal{B}_{N}, Hadamard-Fourier transform, and SPATIO-SPECTRAL LIMITING ON \mathcal{B}_{N}

Given a group G with generating set S such that $S=S^{-1}$ and identity $e \notin S$, the Cayley graph $\Gamma(G, S)$ is the graph whose vertices are the elements of G and whose edges have the form $(g, g s)$, that is, two vertices g_{1}, g_{2} share an edge if $g_{1} g_{2}^{-1} \in S . \mathcal{B}_{N}$ is the Cayley graph of the group $\mathbb{Z}_{2}^{N} \sim\{0,1\}^{N}$. Rather than indexing vertices directly by elements $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{N}\right)$ of \mathbb{Z}_{2}^{N}, it is convenient to index by subsets $S \subset\{1,2, \ldots, N\}$ with $j \in S$ if $\epsilon_{j}=1$. Two vertices v_{R} and v_{S} share an edge precisely if $R \Delta S$ is a singleton. We then write $R \sim S$. v_{\emptyset} corresponds to the identity in \mathbb{Z}_{2}^{N}. The adjacency matrix A is indexed by vertex pairs. We write $A_{R S}=1$ if $R \sim S$ and $A_{R S}=0$ otherwise. The Laplacian of \mathcal{B}_{N} is $L=N I-A$. Its eigenvectors H_{S} can also be indexed by subsets of $\{1, \ldots, N\}$ with $H_{S}(R)=(-1)^{|R \cap S|}$ where $|S|$ is the cardinality of S, and $L H_{S}=2|S| H_{S}$. The Fourier transform of \mathcal{B}_{N} can be identified with the matrix H with entries $H_{R S}=H_{S}(R)$. The matrix $2^{-N / 2} H_{R S}$ is unitary.

We denote by Σ_{r} the Hamming sphere $\Sigma_{r}=\{S:|S|=r\}$ of vertices having Hamming or path distance r from the identity v_{\emptyset}. We denote the closed Hamming ball $B_{K}=\{S:|S| \leq$ $K\}$. The space-limiting operater $Q=Q_{K}$ truncates to B_{K} and the bandlimiting operator P_{K} is defined by $2^{-N} H Q_{K} H$. We denote by $B P Q P$ the operator $P_{K} Q_{K} P_{K}$ for fixed K. The analysis of $B P Q P$ outlined below extends fairly readily to operators $P_{K_{1}} Q_{K_{2}} P_{K_{1}}$ when $K_{1} \neq K_{2}$. Analysis for more general truncations, such as replacing Hamming balls by Hamming annuli, will be done in future work.

III. OUTER AND INNER ADJACENCY AND THEIR compositions on data on Hamming spheres

That each edge in \mathcal{B}_{N} originating in Σ_{r} terminates in $\Sigma_{r \pm 1}$ allows one to express the adjacency matrix as $A=A_{+}+$ A_{-}where A_{+}maps data on Σ_{r} to data on Σ_{r+1} and $A_{-}=$ A_{+}^{T} (see [25]). Define spaces \mathcal{W}_{r} to consist of those vectors supported in Σ_{r} and in the kernel of A_{-}, and let $\mathcal{V}_{r}=\{V=$ $\left.\sum_{k=0}^{N-r} c_{k} A_{+}^{k} W: W \in \mathcal{W}_{r}, c_{k} \in \mathbb{R}\right\}$. In [25] we proved the following:

$$
\begin{align*}
A_{-} A_{+}^{k+1} W & =m(r, k) A_{+}^{k} W, \quad W \in W_{r} \quad \text { where } \\
m(r, k) & =(k+1)(N-2 r+k) \tag{1}
\end{align*}
$$

when $0 \leq k \leq N-r-1$. It follows that \mathcal{V}_{r} is invariant under A for each $r=0, \ldots, N-1$. The representation $V=\sum_{k=0}^{N-r} c_{k} A_{+}^{k} W$ of generic $V \in \mathcal{V}_{r}$ means that \mathcal{V}_{r} is isomorphic to $\mathcal{W}_{r} \times \mathbb{R}^{N-r+1}$. The space \mathcal{W}_{r} has dimension $\binom{N}{r}-\binom{N}{r-1}$. Summation by parts gives $\sum_{r=0}^{N}(N+1-$ $r)\left(\binom{N}{r}-\binom{N}{r-1}\right)=2^{N}$ so these spaces provide a decomposition of real vectors defined on \mathcal{B}_{N}. For each r, A_{+}acts as a shift on $\mathcal{V}_{r}: A_{+}\left(\sum_{k=0}^{N-r} c_{k} A_{+}^{k} W\right)=\sum_{k=1}^{N-r} c_{k-1} A_{+}^{k} W$
whereas $A_{-}\left(\sum_{k=0}^{N-r} c_{k} A_{+}^{k} W\right)=\sum_{k=0}^{N-r} c_{k+1} m(r, k) A_{+}^{k} W$. The action of A on \mathcal{V}_{r} can be represented by a matrix $M A=M A_{r}$ of size $N+1$ with entries $M A(k, k-1)=1$; $M A(k, k+1)=m(k, r)$ and zeros elsewhere.

The bandlimiting operator $P=P_{K}$ can also be represented by $p(A)$ where

$$
\begin{equation*}
p_{k}(x)=\prod_{j=0, j \neq k}^{N} \frac{x-(N-2 j)}{2(j-k)} ; \quad p(x)=\sum_{k=0}^{K} p_{k}(x) \tag{2}
\end{equation*}
$$

Thus P also preserves \mathcal{V}_{r} and its action can be represented as a coefficient matrix obtained by replacing A by $M A$ and $I_{2^{N}}$ by I_{N+1-r} in (2) when x is replaced by A.

Conjugating $B P Q P$ by $2^{-N / 2} H$ gives an operator that we denote by $B Q P Q$. On $\mathcal{V}_{r}, B Q P Q$ can be represented by truncation of the matrix $M P$ to its $(K+1-r)$-principal minor. Computing the eigen-decomposition of the latter then again applying a Hadamard conjugation provides an eigendecomposition of $B P Q P$.

Unfortunately, the matrices $M P$ are ill conditioned, with condition numbers on the order of N^{N}. Even for moderate N, e.g., $N=20$ the path just outlined to eigen-decompositions of $B P Q P$ is barred by the simple inability to compute eigen-decompositions of $M P$ in floating point using standard methods.

As an alternative, given an input coefficient vector $\boldsymbol{c}=$ $\left[c_{0}, \ldots, c_{N-r}\right]$ one can compute $(M P)(c)$ by computing each of the successive factors of $M P$ in (2) and adding up terms. This suggests potential application of the power method, that is, iterative application of $M P$ to an input, projection onto the orthogonal complement of prior identified eigenvectors, and renormalization. The orthogonal projection part is problematic because $M P$ is not self-adjoint (P and Q themselves are).

Because of (1) (and $A_{-}=A_{+}^{T}$), if $W_{1}, W_{2} \in \mathcal{W}_{r}$, one has

$$
\begin{aligned}
& \left\langle A_{+}^{k} W_{1}, A_{+}^{k} W_{2}\right\rangle \\
& \quad=m(r, k-1) m(r, k-2) \cdots m(r, 0)\left\langle W_{1}, W_{2}\right\rangle \\
& \quad \equiv M(r, k)\left\langle W_{1}, W_{2}\right\rangle
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product on \mathcal{B}_{N}. It follows that

$$
\left\langle\sum_{k=0}^{N-r} c_{k} A_{+}^{k} W_{1}, \sum_{k=0}^{N-r} d_{k} A_{+}^{k} W_{2}\right\rangle=\left\langle W_{1}, W_{2}\right\rangle \sum_{k=0}^{N-r} c_{k} d_{k} M(r, k)
$$

In particular, if two vectors in \mathcal{V}_{r} (with same $W \in \mathcal{W}_{r}$) are eigenvectors of $B Q P Q$ for different eigenvalues, then their coefficient vectors are orthogonal with respect to the weighted inner product $\sum c_{k} d_{k} M(r, k)$.

IV. Matrices of HBDO and HBPQP

The power method with weighted inner product $M(r, k)$ can be applied to find eigenvectors of $B Q P Q$ via coefficient eigenvectors of $M B Q P Q$, the coefficient matrix of $B Q P Q$. In principal the algorithm will work with random seeds. Convergence is faster if one can identify a complete, $M(r, k)$ orthogonal set of vectors in \mathbb{R}^{N+1-r} that are in a sense close to the coefficient eigenvectors of $M B Q P Q$.

The prolate differential operator $\mathcal{P}_{c}: \frac{\mathrm{d}}{\mathrm{d} t}\left(t^{2}-1\right) \frac{\mathrm{d}}{\mathrm{d} t}+c^{2} t^{2}$, $c>0$ fixed, has the prolate spheroidal wave functions as eigenfunctions. On $\mathbb{R}, \mathcal{P}_{c}$ commutes with time and band limiting (for appropriate $c>0$), and therefore the eigenfunctions of the latter are also the prolate functions. In [24] we identified a Boolean difference operator (BDO) analogous to the prolate differential operator. On \mathbb{R}, differentiation and multiplication by t are related through a multiple of conjugation by the Fourier transform. Let T be the diagonal matrix on \mathcal{B}_{N} with entries $T_{R R}=\sqrt{2|R|}$ and $D=2^{-N} H T H$, and define

$$
\begin{equation*}
\mathrm{BDO}: \quad D\left(\alpha I-T^{2}\right) D+\alpha T^{2} \tag{3}
\end{equation*}
$$

Then BDO can be regarded as a Boolean analogue of the prolate differential operator. Unlike on \mathbb{R}, BDO does not commute with BPQP. However, BDO arguably almost commutes with BPQP. In [24] it was shown that when $\alpha=2 \sqrt{K(K+1)}$, P_{K} commutes with BDO (but $Q=Q_{K}$ does not commute). Formulas for their commutator (loc. cit.) and numerical estimates suggest that the commutator has relatively small norm compared to that of BDO (Fig. 1).

Just as with BQPQ , the spaces \mathcal{V}_{r} are invariant under the conjugation of BDO by H and so $H \mathrm{BDOH}$ can be represented by a coefficient matrix $M \mathrm{HBDO}$ of size $N-r+1$. In fact, this matrix is tridiagonal [25]. Its eigen-decomposition is easily computed numerically. Figure 1 plots the coefficientwise differences between the corresponding unit-norm eigenvectors of the coefficient matrices $M \mathrm{HBDO}$ and $M \mathrm{BQPQ}$ $((N, K, r)=(20,6,1))$ when the former are used as seed vectors for a version of the power method outlined below. The norm differences between the corresponding (unit-norm) eigenvectors of these almost commuting matrices is on the order of 10^{-2}. Eigenvalues of $M \mathrm{BQPQ}$, hence of BQPQ , are computed by comparing the input and output norms of the numerically computed eigenvectors of $M \mathrm{BQPQ}$. Eigenvalues for $N=20$ and $K=6$ are listed in Tab. I.

V. ADAPTED POWER METHOD

Here is an outline of the adapted power method used to compute the eigen-decomposition of BQPQ on \mathcal{V}_{r} for each fixed $r=0, \ldots, K$.
Inputs $N, K \in\{0, \ldots, N\}, r \in\{0, \ldots, K\}$
Compute coefficient matrix MHBDO of $2^{-N} H \mathrm{BDOH}$ on \mathcal{V}_{r}
Compute eigen-decomposition of MBQPQ
Sort eigenvectors $\boldsymbol{c}^{k}=\left[c_{0}^{k}, \ldots, c_{N-r}^{k}\right]$ satisfying
$c_{K+1}^{k}=\cdots=c_{N-r}^{k}=0$
For $k=0$ to $K-r$
$\boldsymbol{d}^{k}=\boldsymbol{c}^{k}$
While stopping criteria = False
Apply MBQPQ factor-wise to \boldsymbol{d}^{k}
Project output onto weighted $\left(\operatorname{span}\left\{\boldsymbol{d}^{0}, \ldots, \boldsymbol{d}^{k-1}\right\}\right)^{\perp}$ Update $\boldsymbol{d}^{k}=$ normalized projection
end [when stopping criteria is satisfied]
end [loop over k]

Output: coefficient eigenvectors $\boldsymbol{d}^{0}, \ldots, \boldsymbol{d}^{K-r}$ of $M \mathrm{BQPQ}$. Note: The application of $M B Q P Q$ is accomplished by computing the coefficient matrix $M p_{k}$ corresponding to each term p_{k} in (2) applied to the vector then adding terms. The application of $M p_{k}$ is done by iteratively multiplying the vector by the successive factors in the product defining $M p_{k}$.

TABLE I
Eigenvalues of $B P Q P$ for $N=20$ and $K=6$

$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$
0.9996	0.9953	0.9604	0.7857	0.3971	$8.6 \mathrm{e}-2$	$5.9 \mathrm{e}-3$
0.9206	0.6612	0.2595	$4.3 \mathrm{e}-2$	$2.8 \mathrm{e}-3$	$5.7 \mathrm{e}-5$	
0.2056	$3.3 \mathrm{e}-2$	$2.6 \mathrm{e}-3$	$8.9 \mathrm{e}-5$	$8.9 \mathrm{e}-7$		
$2.6 \mathrm{e}-3$	$1.3 \mathrm{e}-4$	$3.0 \mathrm{e}-6$	$1.9 \mathrm{e}-8$			
$5.9 \mathrm{e}-6$	$1.0 \mathrm{e}-7$	$4.3 \mathrm{e}-9$				
$3.6 \mathrm{e}-9$	$1.6 \mathrm{e}-10$					
$4.1 \mathrm{e}-10$						

Fig. 1. Difference between seed eigenvectors of $M \mathrm{HBDO}$ and computed eigenvectors of $M Q P Q,(N, K, r)=(20,6,1)$.

REFERENCES

[1] D. Slepian and H. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty. I," Bell System Tech. J., vol. 40, pp. 43-63, 1961.
[2] H. Landau and H. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty. II," Bell System Tech. J., vol. 40, pp. 65-84, 1961.
[3] -, "Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and bandlimited signals." Bell System Tech. J., vol. 41, pp. 1295-1336, 1962.
[4] D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions; generalized prolate spheroidal functions," Bell System Tech. J., vol. 43, pp. 3009-3057, 1964.
[5] -_, "Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case," ATT Technical Journal, vol. 57, pp. 13711430, 1978.
[6] H. Landau and H. Widom, "Eigenvalue distribution of time and frequency limiting," J. Math. Anal. Appl., vol. 77, pp. 469-481, 1980.
[7] F. Grünbaum, "Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions," SIAM J. Algebraic Discrete Methods, vol. 2, pp. 136-141, 1981.
[8] -, "Toeplitz matrices commuting with tridiagonal matrices," Linear Algebra Appl., vol. 40, pp. 25-36, 1981.
[9] W. Xu and C. Chamzas, "On the periodic discrete prolate spheroidal sequences," SIAM J. Appl. Math., vol. 44, pp. 1210-1217, 1984.
[10] A. Jain and S. Ranganath, "Extrapolation algorithms for discrete signals with application in spectral estimation," IEEE Trans. Acoust. Speech Signal Process., vol. 29, pp. 830-845, 1981.
[11] J. Hogan and J. Lakey, Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser., 2012.
[12] F. Simons, "Slepian functions and their use in signal estimation and spectral analysis," in Handbook of Geomathematics, W. Freeden, M. Nashed, and T. Sonar, Eds. Springer Berlin Heidelberg, 2010, pp. 891-923.
[13] M. Wieczorek and F. Simons, "Localized spectral analysis on the sphere," Geophys. J. Int., vol. 162, pp. 655-675, 2005.
[14] Z. Zhu and M. Wakin, "Time-limited Toeplitz operators on abelian groups: Applications in information theory and subspace approximation," CoRR, vol. abs/1711.07956, 2017. [Online]. Available: http://arxiv.org/abs/1711.07956
[15] A. Sandryhaila and J. M. F. Moura, "Discrete signal processing on graphs," IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644-1656, April 2013.
[16] S. Sardellitti, S. Barbarossa, and P. D. Lorenzo, "On the graph Fourier transform for directed graphs," IEEE J. Sel. Topics Signal Process., vol. 11, no. 6, pp. 796-811, 2017.
[17] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.
[18] I. Pesenson, "Sampling in Paley-Wiener spaces on combinatorial graphs," Trans. Amer. Math. Soc., vol. 360, no. 10, pp. 5603-5627, 2008. [Online]. Available: http://www.jstor.org/stable/20161481
[19] I. Pesenson and M. Pesenson, "Sampling, filtering and sparse approximations on combinatorial graphs," J. Fourier Anal. Appl., vol. 16, pp. 921-942, 2010. [Online]. Available: https://doi.org/10.1007/s00041-009-9116-7
[20] I. Z. Pesenson, "Sampling, splines and frames on compact manifolds," GEM - International Journal on Geomathematics, vol. 6, no. 1, pp. 43-81, Apr 2015. [Online]. Available: https://doi.org/10.1007/s13137-015-0069-5
[21] R. Strichartz, "Half sampling on bipartite graphs," J. Fourier Anal. Appl., vol. 22, no. 5, pp. 1157-1173, Oct 2016. [Online]. Available: https://doi.org/10.1007/s00041-015-9452-8
[22] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, "Signals on graphs: Uncertainty principle and sampling," IEEE Trans. Signal Process., vol. 64, pp. 4845-4860, 2016.
[23] M. Tsitsvero and S. Barbarossa, "On the degrees of freedom of signals on graphs," ArXiv e-prints, 2015.
[24] J. A. Hogan and J. D. Lakey, "An analogue of slepian vectors on boolean hypercubes," J. Fourier Anal. Appl., pp. 1-17, 2018, exported from https://app.dimensions.ai on 2019/01/15. [Online]. Available: https://app.dimensions.ai/details/publication/pub. 1110065024
[25] J. A. Hogan and J. D. Lakey, "Spatio-spectral limiting on hypercubes: eigenspaces," arXiv e-prints, Dec. 2018.

