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Abstract—Hypercubes BN are Cayley graphs of groups Z
N

2 .
Spatio–spectral limiting on BN refers to truncation to the path
neighborhood of a vertex, followed by projection onto small eigen-
modes of the graph Laplacian. We present a method to compute
eigenspaces of spatio–spectral limiting on BN leveraging recent
work of the authors that provides a geometric identification of
the eigenspaces.

I. INTRODUCTION

This work outlines a method to compute eigen decom-

positions of spatio–spectral limiting on hypercubes. Spatio–

spectral limiting on a graph refers to truncation to a neighbor-

hood of a vertex followed by restriction to a subset of eigen-

vectors of an appropriate analogue of the Fourier transform.

On the real line (and discrete–periodic settings) this is known

as time and band limiting, e.g., [1]–[6], [7]–[11]. Extensions

to other settings including spheres, e.g., Simons et al., [12],

[13] and locally compact abelian groups, e.g., Zhu and Wakin

[14] have been studied recently.
Fourier transforms and bandlimiting operators have been

studied recently in the setting of graphs G = (V,E) [15]–

[17]; connections with sampling have been made [18]–[21]

and some initial, general studies of spatio-spectral limiting

on graphs have been done [22], [23]. The goal here is to

study some computational aspects of spatio-spectral limiting

on hypercubes BN , which are Cayley graphs of the groups

Z
N
2 . The space-limiting and spectral-limiting operators are

respectively sparse and full matrices in the standard basis.

They do not commute, and computing the singular value

decomposition of their composition (product) is infeasible

except for small N , because of the size 2N of the matrix

and, potentially, because the eigenvectors may not be well

separated: eigenvalues have large multiplicities; also, some

approximate eigenvalues cannot be separated. An initial study

was made in [24]. In [25], eigenvectors of spatio–spectral

limiting on BN were identified in a manner that, in principal,

leads to computation of eigenvectors and eigenvalues for

reasonably large N by representing eigenspaces in terms of

ranges of certain N × N matrices that represent the spatio-

spectral limiting operator. These matrices are not self-adjoint.

A bigger problem is that they are poorly conditioned. Their

eigen-decompositions cannot be computed accurately by stan-

dard methods even for N on the order of twenty. This does

not necessarily prohibit accurate numerical computation of

eigenvectors and eigenvalues: it just means that approximation

methods need to be tailored to the specific form of the

matrices.

Here we present technical apparatus to make numerical

computation of eigenvectors and eigenvalues of spatio-spectral

limiting on BN feasible. First we review briefly the reduction

of the spatio-spectral limiting operator on BN , which we

denote by BPQP , on invariant subspaces to certain N × N
matrices and outline briefly issues with computation of the

matrices. Next we discuss a certain tridiagonal matrix reduc-

tion of a Boolean difference operator (3) analogue of the

so-called prolate differential operator [11, p. 6] that arguably

almost commutes with the spatio-spectral limiting operator on

BN (the prolate differential operator on R actually commutes

with time and band limiting—denoted by PQP–on R) and

thereby provides effective means to compute the eigenvectors

of BPQP . On BN , The eigenvectors of this tridiagonal matrix

are simple to compute and provide effective seed vectors for

a version of the power method to compute eigenvectors of a

corresponding N ×N representation of the Boolean analogue

of the time and bandlimiting operator. For a self-adjoint

matrix, one version of the power method effectively starts with

random orthogonal seeds, and iteratively applies the matrix,

followed by orthogonal projection onto prior eigenvectors,

and renormalization, until a convergence criterion is satisfied.

Preferably the seeds are, in a sense, close to the target vectors.

We argue that eigenvectors of BDO are effective seeds for

eigenvectors of BPQP. Since our matrices are not self-adjoint,

their eigenvectors are not orthogonal and the power method

has to be adapted accordingly. It turns out that, for different

eigenvalues, the eigenvectors of the matrices corresponding

to BDO and BPQP are orthogonal with respect to a certain

weighted inner product, which allows for application of a

simple variant of the power method. As indicated, computing

the matrix corresponding to BPQP in floating point is problem-

atic. This is because entries are represented through N -term

products of matrices with entries ranging on orders from 1/N
to N , and the product has entries ranging on order of N−N to978-1-4673-7353-1/15/$31.00 c©2015 IEEE



NN . However, when the products are applied factor by factor

to an approximate eigenvector, floating point errors appear

not to be drastic. Examples are provided. The presentation

is outlined as follows.

II. DEFINITION OF BOOLEAN HYPERCUBES BN ,

HADAMARD–FOURIER TRANSFORM, AND

SPATIO–SPECTRAL LIMITING ON BN

Given a group G with generating set S such that S = S−1

and identity e /∈ S, the Cayley graph Γ(G,S) is the graph

whose vertices are the elements of G and whose edges

have the form (g, gs), that is, two vertices g1, g2 share an

edge if g1g
−1
2 ∈ S. BN is the Cayley graph of the group

Z
N
2 ∼ {0, 1}N . Rather than indexing vertices directly by

elements ǫ = (ǫ1, . . . , ǫN ) of ZN
2 , it is convenient to index by

subsets S ⊂ {1, 2, . . . , N} with j ∈ S if ǫj = 1. Two vertices

vR and vS share an edge precisely if R∆S is a singleton.

We then write R ∼ S. v∅ corresponds to the identity in Z
N
2 .

The adjacency matrix A is indexed by vertex pairs. We write

ARS = 1 if R ∼ S and ARS = 0 otherwise. The Laplacian of

BN is L = NI −A. Its eigenvectors HS can also be indexed

by subsets of {1, . . . , N} with HS(R) = (−1)|R∩S| where

|S| is the cardinality of S, and LHS = 2|S|HS . The Fourier

transform of BN can be identified with the matrix H with

entries HRS = HS(R). The matrix 2−N/2HRS is unitary.

We denote by Σr the Hamming sphere Σr = {S : |S| = r}
of vertices having Hamming or path distance r from the iden-

tity v∅. We denote the closed Hamming ball BK = {S : |S| ≤
K}. The space-limiting operater Q = QK truncates to BK

and the bandlimiting operator PK is defined by 2−NHQKH .

We denote by BPQP the operator PKQKPK for fixed K .

The analysis of BPQP outlined below extends fairly readily

to operators PK1
QK2

PK1
when K1 6= K2. Analysis for

more general truncations, such as replacing Hamming balls

by Hamming annuli, will be done in future work.

III. OUTER AND INNER ADJACENCY AND THEIR

COMPOSITIONS ON DATA ON HAMMING SPHERES

That each edge in BN originating in Σr terminates in Σr±1

allows one to express the adjacency matrix as A = A+ +
A− where A+ maps data on Σr to data on Σr+1 and A− =
AT

+ (see [25]). Define spaces Wr to consist of those vectors

supported in Σr and in the kernel of A−, and let Vr = {V =
∑N−r

k=0
ckA

k
+W : W ∈ Wr, ck ∈ R}. In [25] we proved the

following:

A−A
k+1
+ W = m(r, k)Ak

+W, W ∈ Wr where

m(r, k) = (k + 1)(N − 2r + k) (1)

when 0 ≤ k ≤ N − r − 1. It follows that Vr is invariant

under A for each r = 0, . . . , N − 1. The representation

V =
∑N−r

k=0
ckA

k
+W of generic V ∈ Vr means that Vr is

isomorphic to Wr × R
N−r+1. The space Wr has dimension

(

N
r

)

−
(

N
r−1

)

. Summation by parts gives
∑N

r=0
(N + 1 −

r)
((

N
r

)

−
(

N
r−1

))

= 2N so these spaces provide a decom-

position of real vectors defined on BN . For each r, A+ acts

as a shift on Vr: A+

(
∑N−r

k=0
ckA

k
+W

)

=
∑N−r

k=1
ck−1A

k
+W

whereas A−

(
∑N−r

k=0
ckA

k
+W

)

=
∑N−r

k=0
ck+1m(r, k)Ak

+W .

The action of A on Vr can be represented by a matrix

MA = MAr of size N + 1 with entries MA(k, k − 1) = 1;

MA(k, k + 1) = m(k, r) and zeros elsewhere.
The bandlimiting operator P = PK can also be represented

by p(A) where

pk(x) =
N
∏

j=0,j 6=k

x− (N − 2j)

2(j − k)
; p(x) =

K
∑

k=0

pk(x) . (2)

Thus P also preserves Vr and its action can be represented as

a coefficient matrix obtained by replacing A by MA and I2N
by IN+1−r in (2) when x is replaced by A.

Conjugating BPQP by 2−N/2H gives an operator that we

denote by BQPQ. On Vr, BQPQ can be represented by

truncation of the matrix MP to its (K + 1 − r)-principal

minor. Computing the eigen-decomposition of the latter then

again applying a Hadamard conjugation provides an eigende-

composition of BPQP .
Unfortunately, the matrices MP are ill conditioned, with

condition numbers on the order of NN . Even for moderate N ,

e.g., N = 20 the path just outlined to eigen-decompositions

of BPQP is barred by the simple inability to compute

eigen-decompositions of MP in floating point using standard

methods.
As an alternative, given an input coefficient vector c =

[c0, . . . , cN−r] one can compute (MP )(c) by computing each

of the successive factors of MP in (2) and adding up terms.

This suggests potential application of the power method, that

is, iterative application of MP to an input, projection onto the

orthogonal complement of prior identified eigenvectors, and

renormalization. The orthogonal projection part is problematic

because MP is not self-adjoint (P and Q themselves are).
Because of (1) (and A− = AT

+), if W1,W2 ∈ Wr, one has

〈Ak
+W1, A

k
+W2〉

= m(r, k − 1)m(r, k − 2) · · ·m(r, 0)〈W1,W2〉

≡ M(r, k)〈W1,W2〉

where 〈·, ·〉 denotes the standard inner product on BN . It

follows that

〈

N−r
∑

k=0

ckA
k
+W1,

N−r
∑

k=0

dkA
k
+W2

〉

= 〈W1,W2〉

N−r
∑

k=0

ckdkM(r, k) .

In particular, if two vectors in Vr (with same W ∈ Wr) are

eigenvectors of BQPQ for different eigenvalues, then their

coefficient vectors are orthogonal with respect to the weighted

inner product
∑

ckdkM(r, k).

IV. MATRICES OF HBDO AND HBPQP

The power method with weighted inner product M(r, k)
can be applied to find eigenvectors of BQPQ via coefficient

eigenvectors of MBQPQ, the coefficient matrix of BQPQ.

In principal the algorithm will work with random seeds.

Convergence is faster if one can identify a complete, M(r, k)-
orthogonal set of vectors in R

N+1−r that are in a sense close

to the coefficient eigenvectors of MBQPQ.



The prolate differential operator Pc : d

dt(t
2 − 1) d

dt + c2t2,

c > 0 fixed, has the prolate spheroidal wave functions as eigen-

functions. On R, Pc commutes with time and band limiting

(for appropriate c > 0), and therefore the eigenfunctions of

the latter are also the prolate functions. In [24] we identified

a Boolean difference operator (BDO) analogous to the prolate

differential operator. On R, differentiation and multiplication

by t are related through a multiple of conjugation by the

Fourier transform. Let T be the diagonal matrix on BN with

entries TRR =
√

2|R| and D = 2−NHTH , and define

BDO : D(αI − T 2)D + αT 2 . (3)

Then BDO can be regarded as a Boolean analogue of the pro-

late differential operator. Unlike on R, BDO does not commute

with BPQP. However, BDO arguably almost commutes with

BPQP. In [24] it was shown that when α = 2
√

K(K + 1),
PK commutes with BDO (but Q = QK does not commute).

Formulas for their commutator (loc. cit.) and numerical esti-

mates suggest that the commutator has relatively small norm

compared to that of BDO (Fig. 1).

Just as with BQPQ, the spaces Vr are invariant under

the conjugation of BDO by H and so HBDOH can be

represented by a coefficient matrix MHBDO of size N−r+1.

In fact, this matrix is tridiagonal [25]. Its eigen-decomposition

is easily computed numerically. Figure 1 plots the coefficient-

wise differences between the corresponding unit-norm eigen-

vectors of the coefficient matrices MHBDO and MBQPQ
((N,K, r) = (20, 6, 1)) when the former are used as seed

vectors for a version of the power method outlined below.

The norm differences between the corresponding (unit-norm)

eigenvectors of these almost commuting matrices is on the

order of 10−2. Eigenvalues of MBQPQ, hence of BQPQ,

are computed by comparing the input and output norms of the

numerically computed eigenvectors of MBQPQ. Eigenvalues

for N = 20 and K = 6 are listed in Tab. I.

V. ADAPTED POWER METHOD

Here is an outline of the adapted power method used to

compute the eigen-decomposition of BQPQ on Vr for each

fixed r = 0, . . . ,K .

Inputs N , K ∈ {0, . . . , N}, r ∈ {0, . . . ,K}
Compute coefficient matrix MHBDO of

2−NHBDOH on Vr

Compute eigen-decomposition of MBQPQ
Sort eigenvectors c

k = [ck0 , . . . , c
k
N−r] satisfying

ckK+1 = · · · = ckN−r = 0
For k = 0 to K − r
d
k = c

k

While stopping criteria = False

Apply MBQPQ factor-wise to d
k

Project output onto weighted

(span{d0, . . . ,dk−1})⊥

Update d
k = normalized projection

end [when stopping criteria is satisfied]

end [loop over k]

Output: coefficient eigenvectors d
0, ...,dK−r of MBQPQ.

Note: The application of MBQPQ is accomplished by com-

puting the coefficient matrix Mpk corresponding to each

term pk in (2) applied to the vector then adding terms. The

application of Mpk is done by iteratively multiplying the

vector by the successive factors in the product defining Mpk.

TABLE I
EIGENVALUES OF BPQP FOR N = 20 AND K = 6

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
0.9996 0.9953 0.9604 0.7857 0.3971 8.6e-2 5.9e-3

0.9206 0.6612 0.2595 4.3e-2 2.8e-3 5.7e-5
0.2056 3.3e-2 2.6e-3 8.9e-5 8.9e-7
2.6e-3 1.3e-4 3.0e-6 1.9e-8
5.9e-6 1.0e-7 4.3e-9
3.6e-9 1.6e-10

4.1e-10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

0

1

2
10

-3

Fig. 1. Difference between seed eigenvectors of MHBDO and computed
eigenvectors of MQPQ, (N,K, r) = (20, 6, 1).
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