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Abstract—We present two approaches to the construction of
scaling functions and wavelets that generate nearly cardinal and
nearly symmetric wavelets on the line. The first approach casts
wavelet construction as an optimization problem by imposing
constraints on the integer samples of the scaling function and its
associated wavelet and with an objective function that minimizes
deviation from cardinality or symmetry. The second method is
an extension of the feasibility approach by Franklin, Hogan, and
Tam to allow for symmetry by considering variables generated
from uniform samples of the quadrature mirror filter, and is
solved via the Douglas-Rachford algorithm.

I. WAVELETS ON THE LINE, CARDINALITY, AND
SYMMETRY

Shortly after Mallat and Meyer [1], [2] introduced the con-
cept of multiresolution analysis, Daubechies [3] derived a spe-
cial class of real and compactly supported orthonormal dyadic
wavelets with reasonable smoothness. While smooth wavelets
with compact support and orthonormal shifts have been useful
in many applications, cardinality or symmetry is also often
sought. However, cardinality cannot be achieved when coupled
with compact support, continuity, and orthogonal shifts [4].
Similarly, other than the case of the Haar wavelet, symmetry is
unattainable while maintaining real-valuedness, orthogonality,
and compact support [3]. In this section, we introduce wavelets
on the line and motivate our search for nearly cardinal and
nearly symmetric scaling functions and wavelets.

A. Scaling functions and wavelets

For f ∈ L1(R), we define the Fourier transform of f by
f̂(ξ) =

∫
R f(x)e−2πixξ dx, and for f ∈ L2(R) by a limiting

process. The standard method of constructing orthonormal
wavelet bases is through multiresolution analysis which is
described below.

Definition 1: A multiresolution analysis (MRA) for L2(R)
consists of a sequence of closed subspaces {Vj}j∈Z of L2(R)
and a function ϕ ∈ V0 such that the following conditions hold:

(i) the spaces Vj are nested, i.e., Vj ⊂ Vj+1 for all j ∈ Z,
(ii)

⋃
j∈Z Vj = L2(R) and

⋂
j∈Z Vj = {0},

(iii) f(x) ∈ V0 if and only if f(x− k) ∈ V0 for all k ∈ Z,
(iv) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1 for all j ∈ Z,

and

(v) {ϕ(x− k)}k∈Z forms an orthonormal basis for V0.

Under these circumstances, there exists {hk} ∈ `2(Z) so that
ϕ satisfies a scaling equation of the form

1

2
ϕ
(x

2

)
=
∑
k∈Z

hkϕ(x− k). (1)

We call ϕ a scaling function. Taking the Fourier transform of
both sides of (1) gives ϕ̂(2ξ) = H(ξ)ϕ̂(ξ), where H(ξ) =∑
k hke

−2πikξ is called the scaling filter. It satisfies what is
called the quadrature mirror filter property given by∣∣∣∣H(ξ)

∣∣∣∣2 +

∣∣∣∣H(ξ +
1

2

)∣∣∣∣2 ≡ 1, (2)

and so H is also called a quadrature mirror filter (QMF).
Moreover, we can find a wavelet function ψ satisfying

1

2
ψ
(x

2

)
=
∑
k∈Z

gkϕ(x− k), (3)

where {gk}k∈Z ∈ `2(Z). In the Fourier domain, (3) becomes
ψ̂(2ξ) = G(ξ)ϕ̂(ξ), where G(ξ) =

∑
k gke

−2πikξ. Note that
H and G are together called a QMF pair. They satisfy

H(ξ)G(ξ) +H

(
ξ +

1

2

)
G

(
ξ +

1

2

)
≡ 0. (4)

If H is a QMF, then G(ξ) = −e−2πiξH(ξ + 1/2) is a possible
choice that makes H and G a QMF pair.

For the scaling function ϕ and wavelet ψ to have P
continuous and bounded derivatives, the following necessary
conditions are usually imposed:

dkH(ξ)

dξk

∣∣∣∣
ξ= 1

2

= 0 (5)

for all k ∈ {0, 1, 2, . . . , P}.

B. Cardinality

A scaling function ϕ is said to be cardinal at P ∈ Z
if ϕ(k) = δkP , for all k ∈ Z. A famous example is the
cardinal sine function ϕS which is a scaling function for the
Shannon MRA. The Shannon sampling theorem describes the



recovery of functions in the closed linear span of integer shifts
of ϕS from their integer samples. This property of admitting
a reconstruction formula based on integer samples is typical
for cardinal scaling functions. Walter [5] extended the idea to
other wavelet spaces by giving a reconstruction formula that
represents a function f ∈ V0 in terms of its samples at the
integers and integer translates of an interpolant derived from
a scaling function that may not be cardinal, and was furthered
by Janssen [6] to non-integer samples.

However, since cardinality of a scaling function is inconsis-
tent with compact support, orthogonal shifts, and continuity,
we instead search for nearly cardinal scaling functions. For
scaling functions that are nearly cardinal, an invertible sam-
pling operator may be defined for functions in V0.

Definition 2: A scaling function ϕ ∈ V0 is nearly cardinal
at P ∈ Z when γ = γ(ϕ) :=

∑
k |ϕ(k)− δkP | < 1.

We refer to γ as the measure of cardinality. Note that ϕ is
cardinal whenever γ = 0. The following result appears in [7].

Theorem 1: If f ∈ V0, the sampling operator SP defined as

SP f(x) =
∑
k

f(k)ϕ(x− k − P ) (6)

is invertible whenever ϕ is nearly cardinal.

Furthermore, it is shown in [7] that if ϕ is nearly cardinal,
then f ∈ V0 can be recovered from its integer samples
{f(k)}∞k=−∞. In fact, the sequence {fn}∞n=0 ⊂ V0 given by
f0 = SP f , fn+1 = fn + SP (f − fn), converges to f .

C. Symmetry

A scaling function ϕ is symmetric about P ∈ R if
ϕ(x) = ϕ(2P −x) for any x ∈ R. However, symmetry cannot
be coupled with real-valuedness, compact support, orthogonal
shifts, and continuity. If the real-valuedness condition is lifted,
or when the orthogonality property is relaxed, then symmetry
is attainable. Additionally, the length of support and regularity
can be traded off for symmetry, as in the case of the coiflets
[3]. While asymmetric wavelets work well in a number of
numerical applications, quantization errors in image coding are
prominent around the edges of images. With our visual system
more tolerant of symmetric errors than asymmetric ones, less
asymmetry could allow for greater compressibility as some
perceptual errors are neglected [3].

To minimize asymmetry, we first look at the following
characterizations of symmetric scaling functions [7].

Proposition 2: The following are equivalent:
(i) ϕ(x) = ϕ(2P − x)

(ii) H(ξ) = e−4πiPξH(−ξ)
(iii) hk = h2P−k

In the next section, we present an optimization problem
whose objective function is derived from one of the equivalent
statements above. Minimizing this objective function will
allow us to obtain nearly symmetric scaling functions.

II. QMF CONSTRUCTION USING THE ZAK TRANSFORM

A. QMF construction based on integer samples

The Zak transform is a signal transform yielding a time-
frequency representation of time-continuous signals sampled
at a uniform rate. For a more general discussion on the Zak
transform and its properties, see [3], [8], [9]. Given a function
f in the Schwarz space, we define the Zak transform Zf of
f by

Zf(x, ξ) =
∑
k∈Z

f(x+ k)e2πikξ (7)

where (x, ξ) ∈ R2. We can further define the complexified Zak
transform ZCf(x, z) by replacing the exponential e2πiξ in (7)
with a complex number z. The complexified Zak transform is
given by the Laurent series

ZCf(x, z) =
∑
k

f(x+ k)zk, (8)

whenever x ∈ R and z ∈ C. The definitions of Z and ZC
may be extended to L2(R). Henceforth, we abuse notation by
omitting the subscript C, and switching between (7) and (8)
at our convenience.

We now derive a QMF construction that imposes certain
conditions on the integer samples of ϕ and ψ using the Zak
transform.

If F is a Laurent polynomial of the form F (z) =
∑
k akz

k,
we define F ∗(z) = F̄ (z∗) =

∑
k ākz

−k, where z∗ = 1
z̄ . Given

a Laurent polynomial F , we define an operator TF on Laurent
polynomials f by TF f(z2) = F (z)f(z) + F (−z)f(−z). Let
Φ(z) = ZCϕ(0, z) and Ψ(z) = ZCψ(0, z), respectively.

In the Zak domain, equations (1) and (3) may be written as

ZCϕ(x, z2) = H(z)ZCϕ(2x, z) +H(−z)ZCϕ(2x,−z) (9)

ZCψ(x, z2) = G(z)ZCϕ(2x, z) +G(−z)ZCϕ(2x,−z). (10)

For the details of the proof of equations (9) and (10),
the reader is referred to [8]. Note that given a QMF H ,
a possible choice for the conjugate QMF G is given by
G(z) = −z2Q+1H∗(−z), where the role of Q is to re-center
the wavelet ψ. In particular, if ϕ is compactly supported on
[0,M ], we can choose Q = M−1

2 so that ψ is also supported
on the same interval. Setting x = 0 in (9) and (10), we obtain

H(z) =
Φ(z2)Φ∗(z) + z2Q+1Φ(−z)Ψ∗(z2)

Φ(z)Φ∗(z) + Φ(−z)Φ∗(−z)
. (11)

From (11) we see that H is written in terms of the integer
samples of ϕ and ψ. We define the numerator of the fraction
on the right hand side of (11) as B(z), and the denominator
as C(z). C then satisfies C(z) = C(−z) = C∗(z) = C∗(−z)
and C(z) = Φ(z2)Φ∗(z2) + Ψ(z2)Ψ∗(z2). Moreover, the
expression we have derived for H(z) in (11) satisfies the
QMF condition in (2). Additionally, we need extra constraints
to account for compact support and regularity conditions.
In the next proposition, we include these conditions while
summarizing the construction discussed above.



Theorem 3: For odd M > 1, let Φ(z) =
∑M−1
k=1 ϕ(k)zk,

Ψ(z) =
∑M−1
k=1 ψ(k)zk. Let B(z), C(z) be defined as above,

and set

A(z) := Φ(z)Φ∗(z)+Φ(−z)Φ∗(−z)−Φ(z2)Φ∗(z2)−Ψ(z2)Ψ∗(z2).

Suppose further that the following conditions hold:
1) Φ(1) = 1,
2) Ψ(1) = Φ(−1),
3) A(z) ≡ 0, and
4) B′(−1) = B′′(−1) = · · · = B( M−1

2 )(−1) = 0.

Then H(z) =
B(z)

C(z)
satisfies:

(a) H ′(−1) = H ′′(−1) = · · · = H( M−1
2 )(−1) = 0, and

(b) THΦ = Φ and TGΦ = Ψ

where G(z) = −z2Q+1H∗(−z).

The conditions of this theorem identify the exact set of
constraints that must be imposed in constructing a QMF.

B. Near cardinality as an optimization problem

Combining the results in Theorem 3 and the definition of
near cardinality lead us to the following optimization problem.

Problem 1: Minimize γ(ϕ) =
∑M−1
k=1 |ϕ(k)− δkP | subject to

conditions (1) to (4) of Theorem 3.

Fig. 1. Examples of nearly cardinal scaling functions generated by solving
Problem 1 with P = 1 and M = 5. The plots in black, blue, cyan, magenta,
yellow, and red (in that order) have decreasing measures of cardinality. The
graph in black also corresponds to Daubechies’ 3φ. For more details about
the construction of these examples, see [7].

C. Near symmetry as an optimization problem

For symmetry, we first investigate if ϕ(2P −k) = ϕ(k) for
a P ∈ R, ∀ k ∈ Z will imply that ϕ is symmetric. We claim
that H given in (11) will satisfy H(z) = z2PH

(
1
z

)
whenever

ϕ(2P −k) = ϕ(k). The following lemmata and theorem from
[7] show that the claim is true.

Lemma 4: If ϕ(2P − x) = ϕ(x), then ψ(x) =
(−1)2Pψ(2Q+ 1− x).

Lemma 5: If ϕ(2P−k) = ϕ(k) and ψ(k) = (−1)2Pψ(2Q+
1− k) for k ∈ Z, then the following statements are true:

1) Φ(z) = z2PΦ( 1
z )

2) Ψ(z) = (−1)2P z2Q+1Ψ( 1
z )

3) C(z) = C( 1
z )

4) B(z) = z2PB( 1
z )

Theorem 6: Suppose ϕ(2P − k) = ϕ(k), then H(z) =
z2PH

(
1
z

)
, i.e., ϕ is symmetric.

Theorem 6 implies that if the integer samples of ϕ are
even about P , then the scaling filter H in Theorem 3 satisfies
the second statement of Proposition 2, thus establishing the
symmetry of ϕ. At this point, the problem of finding nearly
symmetric scaling functions may now be viewed as an opti-
mization problem. In particular, if we seek symmetry at the
center of support [0,M ], we have the following problem.

Problem 2: Minimize
∑(M−1)/2
k=1 |ϕ(k)− ϕ(M − k)| subject

to conditions (1) to (4) of Theorem 3.

Fig. 2. Examples of nearly symmetric scaling functions about different points:
the graph in black about P = 1.5, in blue about P = 2.5 (Problem 2), and
in red about P = 2; with M = 5 in all cases. For more details about the
construction of these examples, see [7].

We note that a scaling function produced as a solution of
Problem 1 or 2 may not be compactly supported. That Φ and
Ψ are Laurent polynomials is only a necessary condition for H
to be trigonometric polynomial – there is no reason to believe
that C will always divide B in (11). Hence, H may be a
rational function rather than a polynomial. But in such cases,
the scaling filter may be truncated to make it a good starting
point for a Douglas-Rachford iteration to solve the feasibility
problem given in the next section.

III. QMF CONSTRUCTION USING FEASIBILITY APPROACH

For the second approach, we refer to [10] and [11] where the
problem of constructing a one-dimensional scaling function
ϕ and wavelet ψ of support length M − 1 (where M is
even) is recast as a feasibility problem over three constraint
sets. For consistency in notation, we re-define our scaling
and wavelet filters by H(ξ) :=

∑M−1
k=0 hke

2πikξ and G(ξ) =∑M−1
k=0 gke

2πikξ, respectively. Given that

U(ξ) =

[
H(ξ) G(ξ)

H
(
ξ + 1

2

)
G
(
ξ + 1

2

)] ,
the feasibility approach finds a matrix-valued trigonometric
polynomial of the form U(ξ) =

∑M−1
k=0 Ake

2πikξ that satisfies
the following:



1) U(ξ) is unitary for almost every ξ,

2) U(0) =

[
1 0
0 z

]
where |z| = 1 , and

3)
dl

dξl
U(ξ)

∣∣
ξ=0

is diagonal, 0 ≤ l ≤ M−2
2 .

We can use Proposition 2 to write a symmetry constraint
in terms of U(ξ). For brevity, if A ∈ C2×2, we define A†

as taking copy of A with negated off-diagonal entries. The
symmetry condition is as follows.

Theorem 7: If the scaling function ϕ is symmetric about the
center of support, then U(ξ) = e2πi(M−1)ξU(ξ)†.

When M = 6, the feasibility approach (with a clever
choice of starting point) was able to generate a symmetric
scaling function even without incorporating any condition akin
to Theorem 7. However, the generated symmetric example
is complex-valued. To force real-valuedness, we add another
constraint as given in the next theorem.

Theorem 8: The scaling function ϕ and the wavelet ψ are
real-valued if and only if U(ξ) = U(−ξ).

In [10], [11], discretization of the problem is obtained by a
uniform sampling performed on U(ξ): let Uj := U(j/M) =∑M−1
k=0 Ake

2πijk/M . We say U := (U0, U1, . . . , UM−1) ∈
(C2×2)M is a matrix ensemble. An M -point discrete Fourier
transform FM provides a (multiple of a) unitary map-
ping between samples Uj and coefficients Ak, i.e., Ak =
1
M

∑M−1
k=0 Uje

−2πijk/M .
Finally, let (C2×2)Mσ denote the set of all ensembles U

satisfying the σ condition Uj+M/2 = σUj (0 ≤ j ≤M/2−1)

where σ is the row swap matrix σ =

[
0 1
1 0

]
, and (U2×2)M is

the set of ensembles with unitary entries. Then the feasibility
problem with additional symmetry and real conditions is
restated as:

Problem 3: For an even integer M ≥ 4, find U ∈ C :=

5⋂
i=1

Ci,

where
C1 := {U ∈ (C2×2)Mσ ∩ (U2×2)M : U(0) =

[
1 0
0 z

]
, |z| = 1},

C2 :=
{
U ∈ (C2×2)Mσ : (FMeπij/M (F−1

M )(U))j , 0 ≤ j ≤ M−2
2

}
,

C3 := {U ∈ (C2×2)Mσ :
∑M−1
j=0 jl(FMU)j ∈ diag(C)2×2},

C4 := {U ∈ (C2×2)Mσ : ||Uj − e2πi(M−1)j/MU†j || ≤ ε}, and
C5 := {U ∈ (C2×2)Mσ : Uj = UM−j}.

Constraint C4 depends on a tolerance ε which measures the
symmetry of the result. We may set ε = 0 and turn off C5

when seeking a complex-valued symmetric scaling function.
Moreover, Theorem 7 may also be reformulated to allow for
symmetry about a point other than the center of support.

It is also possible to write down a condition for cardinality
in terms of the wavelet matrix U(ξ). However, at the mo-
ment, compactly supported nearly cardinal scaling functions
have been successfully obtained by feeding to the Douglas-
Rachford algorithm the truncated versions of nearly cardinal
scaling functions obtained using the first approach.

(a) Real, nearly symmetric, M = 5 (b) Real, nearly symmetric, M = 7

(c) Real, nearly symmetric, M = 9 (d) Complex, symmetric, M = 9

Fig. 3. Examples of nearly symmetric real-valued scaling functions, and a
symmetry complex-valued function obtained using the feasibility approach.
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