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Abstract—We recast the problem of multiresolution-based
wavelet construction in one and higher dimensions as a feasibility
problem with constraints which enforce desirable properties such
as compact support, smoothness and orthogonality of integer
shifts. By employing the Douglas-Rachford algorithm to solve
this feasibility problem, we generate one-dimensional and non-
separable two-dimensional multiresolution scaling functions and
wavelets.

I. MULTIRESOLUTION ANALYSIS, SCALING FUNCTIONS,
WAVELETS AND DOUGLAS-RACHFORD

The construction of a compactly supported smooth orthog-
onal scaling function–wavelet pair, (ϕ,ψ), on the line was
first achieved by Daubechies in [8] with the help of the
multiresolution structure introduced independently by Mallat
[18] and Meyer [19]. The problem reduces to the construction
of a matrix-valued function U : R → R2×2 satisfying certain
restrictions designed to force ϕ and ψ to have desirable
properties for signal processing. Construction of nonseparable
multiresolution wavelets in higher dimensions has proved more
elusive, although there are some constructions which rely on
lifting one-dimensional constructions [2], [4], [11], [13]–[16],
[22]. In this paper, we describe work done by Franklin in his
PhD thesis [10] on the application of optimisation techniques
to the construction of compactly supported smooth orthogonal
multiresolution wavelets in one- and two-dimensions.

In what follows, the collection of n × n matrices with
complex entries is denoted Cn×n and the collection of unitary
n × n matrices is denoted U(n). If x ∈ Rn and α =
(α1, . . . , αn) with each αi a non-negative integer, we denote
xα = xα1

1 · · ·xαn
n and ∂α =

(
∂
∂x1

)α1

· · ·
(

∂
∂xn

)αn

. We also
let QnM = {0, 1, . . . ,M − 1}n ⊂ Zn.

A. Multiresolution analysis and wavelet matrices

Definition 1: A multiresolution analysis (MRA)
({Vj}∞j=−∞, ϕ) for L2(Rn) is a sequence of closed
subspaces {Vj}∞j=−∞ ⊂ L2(Rn) and a function ϕ ∈ V0 such
that

(i) Vj ⊂ Vj+1 for all j ∈ Z
(ii) ∩∞j=−∞Vj = {0} and ∪∞j=−∞Vj = L2(R)

(iii) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1

(iv) f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0 (k ∈ Zn).

(v) {ϕ(x− k)}∞k=∞ is an orthonormal basis for V0.
Given an MRA structure, it can be shown that there ex-
ists an `2 sequence {g0k}k∈Zn such that, for m0(ξ) =∑
k∈Zn g0ke

−2πi〈k,ξ〉 (ξ ∈ R), we have

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ). (1)

A necessary (but not sufficient) condition for orthonormality
of the collection {ϕ(x − k)}k∈Zn is the quadrature mirror
filter (QMF) condition

∑
p∈V n |m0(ξ+p/2)|2 = 1 for almost

every ξ, where V n is the collection of the 2n vertices of the
unit cube [0, 1]n ⊂ Rn.

Let W0 = V1	V0. Then there are 2n−1 wavelets {ψε}2
n−1
ε=1

such that the collection {ψε(x− k); k ∈ Z, 1 ≤ ε ≤ 2n− 1}
is an orthonormal basis for W0. In this case, the collection
{2nj/2ψε(2jx− k); k ∈ Zn, 1 ≤ ε ≤ 2n− 1} is an orthonor-
mal wavelet basis for L2(Rn). The challenge is finding such
functions ϕ and ψε (1 ≤ ε ≤ 2n − 1).

Again because of the MRA structure, there are `2 sequences
{gεk}k∈Zn such that with mε(ξ) =

∑
k∈Zn gεke

2πi〈k,ξ〉 we have

ψ̂ε(2ξ) = mε(ξ)ϕ̂(ξ). (2)

Define the mapping U : Rn → C2n×2n by

U(ξ)εp = (mε(ξ +
p

2
))0≤ε≤2n−1, p∈V n . (3)

If {ψε(x − k); k ∈ Zn, 1 ≤ ε ≤ 2n − 1} is an orthonormal
collection in W0, then U(ξ) must be unitary for all ξ. This
condition is not sufficient to ensure orthonormality. Neverthe-
less, once such a function U is given, it is possible to check
that the wavelets generated by it form an orthonormal basis
for L2(Rn) (see [6] for details).

Beyond unitarity of U(ξ), we also need to impose further
conditions. To ensure completeness of the wavelet basis, it is
enough to ensure the multiresolution property ∪∞j=−∞Vj =
L2(Rn). We shall also seek conditions to ensure that the scal-
ing function and associated wavelets are themselves smooth
and compactly supported, and that the length of the support
is a quantity to be minimised wherever possible.

By the multidimensional Paley-Wiener theorem [23], com-
pact support of the scaling function and associated wavelets
is equivalent to the filters {mε}2

n−1
ε=0 being trigonometric



polynomials. We will seek filters whose coefficients gεk are
zero unless 0 ≤ ki ≤M − 1 for all 0 ≤ ε ≤ 2n− 1 and some
fixed positive integer M .

The completeness and smoothness conditions can be im-
posed using conditions 3 and 4 in Problem 1 below.
Problem 1: Find a matrix-valued function U(ξ) of the form
(3) such that

1. Each function mε (0 ≤ ε ≤ 2n − 1) is of the form
mε(ξ) =

∑
k∈Qn

M
gεke

2πi〈k,ξ〉;
2. U(ξ) is unitary for a.e. ξ;

3. U(0) =

(
1 0T

0 V

)
with V ∈ U(2n − 1) and 0T =

(0, 0, . . . , 0) ∈ C2n−1;

4. ∂αU(0) =

(
aα 0T

0 Aα

)
(|α| ≤ d) with Aα ∈

C(2n−1)×(2n−1) and aα ∈ C.

B. Optimisation Preliminaries
Projection operators: Let E be a finite-dimensional Hilbert
space. If S ⊆ E , its (metric) projector is the point-to-set
mapping given by

PS(x) := {s ∈ S : ‖s− x‖ ≤ d(x, S)} ,
where d(x, S) = infs∈S ‖x−s‖. It is straightforward to check
that PS(x) 6= ∅ for all x ∈ E so long as S is nonempty and
closed. We write PS(x) = p to mean PS(x) = {p}.

Proposition 2 (Properties of projectors): Let E be a finite
dimensional Hilbert space.

1) Let C0, C1, . . . , CM−1 ⊆ E be nonempty closed sets
and define C := C0 × · · · × CM−1 ⊆ EM . Then

PC = PC0
× · · · × PCM−1

.

2) Let L : E → E be an isometric isometry and C ⊆ E be
a nonempty closed set. Then

PL(C) = L ◦ PC ◦ L−1.
In what follows, the unit sphere is denoted S := {x ∈

E : ‖x‖ = 1}. The singular value decomposition (SVD) of a
matrix A ∈ Cn×n is A = USV ∗ where U, V ∈ U(n) and
S ∈ Cn×n is a diagonal matrix with the diagonal entries (the
singular values of A) being the eigenvalues of

√
A∗A.

Proposition 3 (Examples of projectors): Let E , E ′ be finite
dimensional Hilbert spaces.

1) Let L : E → E ′ be linear and denote C := {x ∈ E :
Lx = 0}. If LL∗ is invertible, then

PC(x) = x− L∗(LL∗)−1(Lx) ∀x ∈ E .

2) Let x ∈ E . Then PS(x) =

{
x
‖x‖ x 6= 0,

S x = 0.
3) Let X ∈ Cn×n. Then PU(n)(X) = {UV ∗ : X =

USV ∗ is an SVD}.
Projection Algorithms and Feasibility Problems: Given finitely
many closed sets C1, . . . , Cn ⊆ E with nonempty intersection,
the corresponding feasibility problem is

find x ∈
n⋂
k=1

Ck. (4)

Projection algorithms are a family of iterative algorithms
which can be used to solve (4) by, in each step, utilising
only projectors onto the individual sets (rather than the entire
intersection at once). The two most important examples of
projection algorithms are the method of cyclic projections [5]
and the Douglas–Rachford (DR) method [3], [17].

In this work, we employ the DR method which is the
following fixed point iteration: Given closed sets C,D ⊂ E
and x0 ∈ E , choose any sequence (xk) satisfying

xk+1 ∈ T (xk) where T :=
I +RCRD

2
, (5)

and RA := 2PA− I denotes the reflector with respect to a set
A. Here we note that sequence (xk) is only required to satisfy
the inclusion since, in general, the operator T : E → 2E is a
point-to-set mapping.

When applying a method based on (5), the sequence of
interest (i.e., the one that solves (4)) is not (xk) itself, but
one of its projections onto the set A. In order to be concrete,
we state a general convergence result for the convex setting
in Theorem 4.

Although the DR algorithm as described above only directly
applies to (4) with n = 2, the general problem (4) can always
be cast as a two set problem. To do so, we define the following
two subsets of En:

C := C1×C2×· · ·×Cn, D := {(x, x, . . . , x) ∈ En : x ∈ E}.

Then the following equivalence holds

x ∈
n⋂
k=1

Ck ⇐⇒ (x, x, . . . , x) ∈ C ∩D.

From here onwards, when speaking of applying the DR
algorithm to a feasibility problem, we will mean its product
space reformulation.

Theorem 4 (Behaviour of the DR algorithm [3, Theo-
rem 3.13]): Suppose C,D ⊆ E are closed and convex with
nonempty intersection. Let x0 ∈ E and set xk+1 = T (xk)
(k ∈ N). Then the sequence (xk) converges to a point
x ∈ FixT := {x : Tx = x} and, moreover, PD(x) ∈ C ∩D.

Beyond the case of convex sets, there is insufficient theory
to fully justify application of projection methods. Indeed, most
non-convex results in the literature rely on restrictive regularity
notions and yield only local convergence guarantees [7], [12],
[21]. Nevertheless, projection methods have been empirically
observed to still perform well in certain non-convex settings
including matrix completion [1]. This experience suggests use
of the DR method in the setting outlined in following section.

II. WAVELETS ON THE LINE

Here the wavelet matrix U = U(ξ) takes the form

U(ξ) =

(
m0(ξ) m1(ξ)

m0(ξ + 1/2) m1(ξ + 1/2)

)
. (6)

For compact support, we insist that m0 and m1 be trigono-
metric polynomials of the form m0(ξ) =

∑M−1
k=0 hke

2πikξ,
m1(ξ) =

∑M−1
k=0 gke

2πikξ from which we see that U(ξ) =



∑M−1
k=0 Ake

2πikξ with each Ak ∈ C2×2. This allows for a
discretisation of the problem. Let Uj = U(j/M) (j ∈ Q1

M ),
i.e., Uj =

∑M−1
k=0 Ake

2πijk/M . The sampling procedure pro-
duces an ensemble of matrices U = (U0, U1, . . . , UM−1) ∈
(C2×2)M . The coefficient matrices Ak may be obtained from
the sample matrices Uj by a discrete Fourier transform:

Ak = (FMA)k =
1

M

M−1∑
j=0

Uje
−2πijk/M , (7)

with inverse Uj = (F−1M A)j . From this we see that properties
of U(ξ), which are encoded in the coefficient matrices Ak,
are also encoded in the sample matrices Uj . The sampling
procedure imposes some structure on the ensembles. When
U is defined as in (6), then U(ξ + 1/2) = σU(ξ) where

σ =

(
0 1
1 0

)
is the “row swap” matrix. The samples Uj

must reflect this symmetry. In particular, when M ≥ 4 is
even, the ensemble U of samples must satisfy Uj+M/2 = σUj
(j ∈ Q1

M/2). The collection of enembles V ∈ (C2×2)M with
this symmetry property is denoted (C2×2)Mσ .

Unitarity of each sample Uj = U(j/M) (j ∈ Q1
M ) is

insufficient to ensure unitarity of U(ξ) for all ξ. However,
it transpires that unitarity of the 2M samples U( j

2M ) (j ∈
Q1

2M )) is sufficient. These matrices may be obtained from U
as follows. Let (χM )j = eπij/M (j ∈ Q1

M ), U be as above
and

Ũ =

(
U

(
1

2M

)
, U

(
3

2M

)
, . . . , U

(
1− 1

2M

))
.

i.e., (Ũ)` = U( 2`+1
2M ) (` ∈ Q1

M ). Then Ũ = F−1M χMFM (U).
Finally we note that the regularity condition 4 from Prob-

lem 1 may be written in terms of the sample matrices Uj :

M−1∑
j=0

j`Aj =
1

M

M−1∑
k=0

α`kUk

where α`k =
1

M

∑M−1
j=0 j`e−2πikj/M .

Problem 1 can now be viewed as the following three-set
feasibility problem (posed in the subspace (C2×2)Mσ ):
Problem 2: Given an even integer M ≥ 4, find U =
(U0, . . . , UM−1) ∈ C1 ∩ C2 ∩ C3 ⊆ (C2×2)Mσ where

C1 :=

{
U : U0 =

(
1 0
0 z

)
, |z| = 1, Uj ∈ U(2), j ∈ Q1

M/2

}
C2 :=

{
U : (FMχM (FM )−1(U))j ∈ U(2), j ∈ Q1

M/2

}
,

C3 :=

U :

M−1∑
j=0

α`kUk ∈ diag (C2×2), 1 ≤ ` ≤ d

 .

Given an arbitrary starting point (i.e, an ensemble U0 ∈
(C2×2)Mσ ), we apply the DR algorithm in the Hilbert space
E = (C2×2)Mσ to find an ensemble U ∈ ∩3j=1Cj . Then (7)
is used to compute the coefficient matrices Ak, whose entries
contain the scaling and wavelet dilation equation coefficients
hk and gk. The cascade algorithm [9] is used to determine the

Fig. 1. Plots of the scaling function ϕ and associated wavelet ψ on their
support [0, 5], discovered by the DR method (with M = 6). The real
component of the respective functions is denoted in blue, the imaginary
component in light blue, and the magnitude in black.

values of the scaling function ϕ at dyadic rationals and the
Fourier transform of equation (2) is used to compute the values
of the wavelet ψ. Despite the constraints C1 and C2 being non-
convex, the DR algorithm converges for a high proportion
of random starting ensembles, producing smooth compactly
supported scaling functions and wavelets with orthogonal
shifts. In particular, for each even integer M , the algorithm
successfully reproduces the Daubechies systems of that order,
provided the appropriate number of derivative constraints are
applied in C3. The algorithm has also provided hitherto unseen
examples, a symmetric example of which appears in Figure 1.

III. WAVELETS ON THE PLANE

In two dimensions, the wavelet matrix U(ξ) (ξ ∈ R2) takes
the form

U(ξ)T =


m0(ξ) m0(ξ + q1) m0(ξ + q2) m0(ξ + q3)
m1(ξ) m1(ξ + q1) m1(ξ + q2) m1(ξ + q3)
m2(ξ) m2(ξ + q1) m2(ξ + q2) m2(ξ + q3)
m3(ξ) m3(ξ + q1) m3(ξ + q2) m3(ξ + q3)


where q1 = ( 12 , 0), q2 = (0, 12 ) and q3 = ( 12 ,

1
2 ) and to ensure

compact support, we require that each mε (0 ≤ ε ≤ 3)
be a trigonometric polynomial, i.e., for some even integer
M ≥ 4, we have mε(ξ) =

∑
k∈Q2

M
gεke

2πi〈k,ξ〉. U(ξ) may
therefore be written as U(ξ) =

∑
k∈Q2

M
Ake

2πi〈k,ξ〉 with each
Ak ∈ C4×4. We sample U(ξ) at the points ξ = j/M with
j ∈ Q2

M to obtain matrices Uj = U(j/M) and an ensemble
U = (Uj)j∈Q2

M
∈ (C4×4)M×M . The coefficient matrices and

sample ensemble are related through the (two-dimensional)
discrete Fourier transform:

Ak =
1

M2

∑
j∈Q2

M

Uje
−2πi〈j,k〉/M .

From the definition of U(ξ) above we see that U must satisfy
the consistency conditions U(ξ+ q1) = σ1U(ξ), U(ξ+ q2) =
σ2U(ξ) where σ1 and σ2 are the row swap matrices

σ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , σ2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .



The samples Uj must also satisfy these conditions in the sense
that Uj+Mq1 = σ1Uj and Uj+Mq2 = σ2Uj for j ∈ Q2

M/2.
We therefore restrict attention to the subspace (C4×4)M×Mσ1,σ2

of (C4×4)M×M consisting of ensembles that satisfy the con-
sistency conditions. By 1 ⊗ U(3) we mean the collection of

4 × 4 matrices of the form
(
1 0T

0 V

)
where V ∈ U(3). By

C⊗C3×3 we mean the collection of 4×4 matrices of the form(
b 0T

0 B

)
where b ∈ C and B ∈ C3×3. Wavelet construction

is then reduced to solving the following feasibility problem.

Problem 3: Let E = (C4×4)M×Mσ1,σ2
. Find an ensemble U ∈

∩3j=1Cj where

C1 = {U ∈ E : U0 ∈ 1⊗ U(3), Uj ∈ U(4), j ∈ Q2
M/2}

C2 = {U ∈ E : (FM−1χ`FMU)j ∈ U(4) 1 ≤ ` ≤ 3, j ∈ Q2
M/2}

C3 = {U ∈ E :
∑
j∈Q2

M

aα,jUj ∈ C⊗ C3×3, |α| ≤ d}.

Here (χ`)j = eπi〈p`,j〉/M , aα,j =
∑
k∈Q2

M
kαe−2πi〈j,k〉/M

and {p`}3`=0 = V 2.

The DR algorithm is used to solve Problem 3, seeded by
a starting ensemble U ∈ (C4×4)M×M . The ensemble found
in the intersection of the three constraint sets given must
pass Cohen’s criterion for orthogonality [6] and a test for
non-separability. As in the one-dimensional case, the output
is sufficient to determine a scaling function and associated
wavelets. The output of a typical run of the algorithm is given
in Figure 2, which shows a smooth non-separable orthogo-
nal MRA scaling function ϕ and three associated wavelets
ψ1, ψ2, ψ3 all supported on [0, 5]2.
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