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Abstract—We consider Gabor Riesz sequences generated by a
window function with finite uncertainty product over a rational
lattice in R2. We prove that the distance of a time-frequency
shift of the window function to the Gabor space is equivalent,
up to constants, to the Euclidean distance of the parameters of
the time-frequency shift to the lattice. Under certain additional
assumptions, these constants can be estimated. As a byproduct
of the methods employed, we also obtain a strengthening of the
so-called weak Balian-Low theorem.

I. INTRODUCTION

This paper as well as the sister paper written by the same
authors, [4], are research extensions of the article [3]. The
present paper discusses extensions in the classical Balian-
Low setting of Gabor windows with finite uncertainty product,
whereas [4] deals with the amalgam Balian-Low setting of
Gabor windows in the Feichtinger algebra S0.

The classical Balian-Low theorem provides one of the
fundamental restrictions of time-frequency analysis. A Gabor
system (g,Λ) = {e2πibxg(x − a) : (a, b) ∈ Λ} with the
window g ∈ L2(R) having finite uncertainty product, i.e.,∫
R x

2|g(x)|2dx ·
∫
R ξ

2|ĝ(ξ)|2 <∞, and Λ ⊂ R2 a lattice can
never be a Riesz basis for L2(R).

A general result [8, Cor. 7.5.2] states that a Gabor system
that is a Riesz basis for L2(R) must have an underlying
lattice with critical density. In this sense, the Balian-Low
theorem’s restriction on the regularity of the window function
only comes into play in the case of Λ having density 1.
However, Gabor systems that form Riesz sequences within
L2(R) are still possible if the corresponding lattice densities
are strictly smaller than 1. A characterization of Balian-Low
type behaviour in such regimes is given by the main result of
[3].

Theorem I.1. Let g ∈ L2(R) and let Λ ⊂ R2 be a rational
density lattice such that the Gabor system (g,Λ) as defined
above is a Riesz basis for its closed linear span G(g,Λ). If
e2πiηxg(x − u) ∈ G(g,Λ) for some (u, η) /∈ Λ, then g has
infinite uncertainty product.

It is worth mentioning that once the restriction on the
density of Λ being equal to 1 is dropped, i.e. if the Gabor
space is allowed to be a proper subspace of L2(R), the density
of the lattice can be either rational or irrational. The rational
density assumption is a byproduct of the methods used in [5].
An exploration into alternative approaches with partial results
is given in [4], [6].

The main focus of this paper is a quantitative version
of Theorem I.1 suggested by engineering applications. The
principal result reads as follows.

Theorem I.2. [5, Thm 1.3] Let Λ ⊂ R2 be a rational density
lattice and let g ∈ L2(R) have finite uncertainty product such
that the Gabor system {e2πibxg(x − a) : (a, b) ∈ Λ} is a
Riesz basis of its closed linear span G(g,Λ). Then there exist
constants α, β > 0 such that for all (u, η) ∈ R2 we have

α · dist((u, η),Λ) ≤ dist(e2πiηxg(x− u),G(g,Λ))

≤ β · dist((u, η),Λ).

The remainder of this paper is organized as follows. Section
II contains preliminaries, notation and general lemmas. Section
III contains a sketch of the main result based on the derivative
of the time-frequency map and Theorem I.1. Finally, Section
IV provides explicit values for the constants α, β under
stronger assumptions and discusses a strengthening of the so
called weak Balian-Low theorem [9, Thm 8].

II. PRELIMINARIES

We shall denote H1(R) := {f ∈ L2(R) : f, f̂ ∈ H1(R)},
where H1(R) is the usual Sobolev space. The condition of g
having finite uncertainty product is equivalent to g ∈ H1(R).

For f ∈ L2(R) and a, b ∈ R we define the translation and
respectively modulation operators by Taf(x) := f(x−a) and
Mbf(x) := e2πibxf(x). Both operators are unitary on L2(R)
and so is their composition, the time-frequency shift operator
with parameters (a, b), defined as π(a, b) := MbTa.

For an invertible 2× 2 matrix A we have a non-degenerate
lattice Λ = AZ2. The density of Λ is then given by
|det(A)|−1. For a function g ∈ L2(R), called a window
function, we define the Gabor system with respect to the lattice
Λ by (g,Λ) := {π(a, b)g : (a, b) ∈ Λ}. The L2(R) closure of
the span of the Gabor system is called the associated Gabor
space G(g,Λ) := span(g,Λ). For a closed linear subspace
G ⊂ L2(R) we set I(G) := {z ∈ R2 : π(z)G ⊂ G} to be the
set of time-frequency shifts which leave G invariant.

Lemma II.1. [2, Prop. A.1] Let g ∈ L2(R) and let Λ ⊂ R2

be a lattice. Set G := G(g,Λ). Then z ∈ I(G) if and only if
π(z)g ∈ G. Additionally, I(G) is a closed additive subgroup
of R2.

Proposition II.2. [5, Cor. 3.3] Let g ∈ H1(R) and de-
fine the time-frequency map Sg : R2 → L2(R) by



Sg(a, b) := π(a, b)g = e2πib·g(· − a). Then the map Sg is
continuously (Fréchet) differentiable with

S′g(z)(a, b) = −aπ(z)g′ + 2πibXπ(z)g, z ∈ R2.

Sketch of proof. We denote by X the position operator defined
by Xf(x) := xf(x). Using the fact that time-frequency shift
operators commute up to unimodular constants, it suffices to
show S′g(a, b) = −ag′+2πibXg, where we use the shorthand
notation S′g for the derivative of the time-frequency map at
the origin of the time-frequency plane.

By direct computation we have

|Sg(a, b)− g + ag′ − 2πibXg| = e2πibx(Tag − g + ag′)(x)+

+ (e2πibx − 1− 2πibx)g(x)+

+ a(1− e2πibx)g′(x).
(1)

The claim is proved by showing that the L2 norm of each of
the terms divided by

√
a2 + b2 tends to 0 as (a, b) → (0, 0).

For example, for the middle term in (1) convergence is shown
by splitting the integral into the norm over the interval centered
at the origin of radius 1√

b
and the rest of the real line and using

the inequality | sinc(x)−e−iπx| ≤ min(2, π|x|) as well as the
fact that Xg ∈ L2(R). The other two terms in (1) are dealt
with similarly.

Finally we discuss the main technical tool used for the
proof of Theorem I.2, the Zak transform [8, Chap. 8]. The
dependency of the methodology of the proof on it is the
principal reason for assuming the additional restriction of the
density of Λ being rational. For a function f ∈ L2(R), the
Zak transform is defined by the L2

loc(R2) limit

Zf(x, ω) := lim
N→∞

N∑
k=−N

e2πikωf(x− k), (x, ω) ∈ R2.

The Zak transform f 7→ Zf is unitary from
L2(R) to L2([0, 1]2) and exhibits a variety of
useful properties. For example, it is quasi-periodic,
Zf(x+m,ω + n) = e2πimωZf(x, ω) for all m,n ∈ Z
and it maps time-frequency shifts to twisted shifts in the
Zak domain, Z(π(u, η)f)(x, ω) = e2πiηxZf(x − u, ω − η)
for all (u, η) ∈ R2. The Zak transform also satisfies
the inversion formulae f(x) =

∫ 1

0
Zf(x, ω)dω and

f̂(ω) =
∫ 1

0
e−2πixωZf(x, ω)dx. All of these properties

hold for a.e. (x, ω) ∈ R2.

Lemma II.3. [5, Lemma 2.4] Let f ∈ L2(R). Then f ∈
H1(R) if and only if Zf ∈ H1

loc(R2). In this case, the weak
partial derivatives of Zf are given by ∂1Zf = Z(f ′) and
∂2Zf(x, ω) = −2πi(Z(Xf)(x, ω)− x · Zf(x, ω)).

We omit the technical proof here as it relies on standard
density arguments (C∞c (R) being dense in H1(R)) for one
direction of the implication and known properties of absolutely
continuous functions for the other.

III. MAIN RESULT

The main ingredient of the proof of Theorem I.2 is the
following proposition.

Proposition III.1. Let Λ ⊂ R2 be a rational density lattice
and let g ∈ H1(R) be such that (g,Λ) is a Riesz basis for its
closed linear span G(g,Λ). Then for any (a, b) ∈ R2\{(0, 0)}
we have that −ag′ + 2πibXg /∈ G(g,Λ).

The proof of Proposition III.1 is technical and rather long.
Here we will sketch the proof of a particular and much more
straightforward case.

Proposition III.2. Let Λ = Z×2Z and let g ∈ H1(R) be such
that (g,Λ) is a Riesz basis for its closed linear span G(g,Λ).
Then g′ /∈ G(g,Λ).

We will denote the Zak transform of g by G := Zg for
simplicity. The condition of (g,Λ) being a Riesz basis for its
span is then equivalent to [3, Lemma 2.3]

2A ≤ |G(x, ω)|2 + |G(x+ 1
2 , ω)|2 ≤ 2B, a.e.(x, ω) ∈ R2,

(2)
where A,B > 0 are the Riesz bounds.

Next we provide a characterization for a function being
contained in the Gabor space.

Lemma III.3. Let g and Λ = Z × 2Z be as above. Then
f ∈ G(g,Λ) if and only if there exists some function h ∈
L2
loc(R2) that is 1

2 -periodic in x and 1-periodic in ω satisfying
Zf(x, ω) = h(x, ω)G(x, ω).

Sketch of proof. The condition f ∈ G(g,Λ) is equivalent to
the existence of a sequence (cm,n)m,n ∈ `2(Z2) such that

f =
∑
m,n∈Z

cm,nπ(m, 2n)g.

The conclusion follows from the properties of the Zak trans-
form and from the exponentials e2πi(2nx+mω) forming a
Fourier basis for L2([0, 1

2 ]× [0, 1]).

Sketch of proof of Proposition III.2. Let us assume that g′ ∈
G(g,Λ). By Lemma III.3 and Lemma II.3, there exists a
function h such that for a.e. (x, ω) ∈ R2 we have ∂1G(x, ω) =
h(x, ω)G(x, ω). This simple PDE leads to the general solution
(after taking care of some measure theoretic issues)

G(x, ω) = G(0, ω)e
∫ x
0
h(s,ω)ds, (3)

which holds for a.e. (x, ω) ∈ R2.
Note now that as a consequence of (2) and (3), we obtain

0 < 2A ≤ |G(0, ω)|2(e2 Re
∫ x
0
h(s,ω)ds + e2 Re

∫ x+1
2

0 h(s,ω)ds)

which implies that for a.e. ω we have that G(0, ω) 6= 0. Now
using the quasiperiodicity of G, the periodicity of h and (3)
we obtain

e2πiωG(0, ω)e
∫ x
0
h(s,ω)ds = G(0, ω)e2

∫ 1
2

0 h(s,ω)dse
∫ x
0
h(s,ω)ds,

which then reduces to e2
∫ 1

2
0 h(s,ω)ds = e2πiω . Therefore

G(x + 1
2 , ω) = ±eπiωG(x, ω) and then |G(x + 1

2 , ω)| =



|G(x, ω)|. Returning now to (2), we obtain |G(x, ω)|2 ≥ A for
a.e. (x, ω), so the Zak transform of g is essentially bounded
below. G is also bounded above as a consequence of (2). But
this implies [1, Thm 3.1.d] that (g,Z×Z) is a frame for L2(R).
By Ron-Shen duality [8, Thm 7.4.3], (g,Z×Z) must also be
a Riesz sequence for its closed linear span, i.e., for L2(R), as
the adjoint lattice of Z×Z is itself. This is a contradiction to
the classical Balian-Low theorem as we have assumed from
the beginning that g ∈ H1(R).

As stated before, the proof of Proposition III.1—the main
result of [5]—is much more technically involved. The proof re-
lies on showing that an entire line of additional time-frequency
shifts is contained in I(G(g,Λ)) using uniqueness properties
of the solutions to a certain matrix differential equation that
arises from the assumption of −ag′ + 2πibXg ∈ G(g,Λ) in
the case of the lattice Λ being of the form 1

QZ × PZ. This
coupled with Theorem I.1 implies the entire line of additional
time-frequency shifts is contained in Λ, which is absurd. From
there standard metaplectic operator techniques [7] are used to
generalize to arbitrary rational density lattices.

Sketch of the proof of Theorem I.2. The upper bound β is
straightforward to estimate, even under weaker assumptions.
Standard inequalities show that for any g ∈ H1(R), any lattice
Λ ⊂ R2 and any z ∈ R2

dist(π(z)g,G(g,Λ)) ≤
√
‖g′‖2L2 + ‖2πiXg‖2L2 · dist(z,Λ).

Let us denote by P the orthogonal projection onto G(g,Λ) in
L2(R). Then dist(π(z)g,G(g,Λ)) = ‖(Id−P)(π(z+λ)g)‖L2

for any λ ∈ Λ due to Lemma II.1. As a consequence of
Proposition III.1, the R-linear mapping R2 → L2(R), (a, b) 7→
(Id−P)(−ag′ + 2πibXg), with L2(R) viewed as an R-linear
space, is injective. Therefore, since R2 is finite dimensional,
there exists some c > 0 such that

‖(Id−P)(−ag′ + 2πibXg)‖L2 ≥ 2c‖(a, b)‖2. (4)

Now from Proposition II.2 we can write

π(a, b)g − g = −ag′ + 2πibXg + ε(a, b)

where the error term ε satisfies lim(a,b)→(0,0)
ε(a,b)
‖(a,b)‖2 = 0.

Therefore there exists some δ > 0 such that ‖ε(a, b)‖L2 ≤
c‖(a, b)‖2 for ‖(a, b)‖ < δ. Since (Id−P)g = 0, we ob-
tain from (4) that dist(π(a, b)g,G(g,Λ)) ≥ c‖(a, b)‖2 for
‖(a, b)‖2 < δ.

Finally, consider the compact subset obtained by removing
the δ-balls centered at lattice points from the fundamental
domain of Λ and denote it by Cδ . Clearly for any z ∈ Cδ we
have that dist(z,Λ) ≥ δ. Assume that dist(π(z)g,G(g,Λ))
is not bounded below on Cδ . Then we can find a sequence
(zn)n in Cδ such that dist(π(zn)g,G(g,Λ)) → 0. By com-
pactness and possibly passing to a subsequence, we can
assume that there exists z∗ ∈ Cδ such that zn → z∗. But
then dist(π(z∗)g,G(g,Λ)) = 0 and since z∗ /∈ Λ, this
contradicts Theorem I.1. Therefore there exists 0 < c′ ≤
infz∈Cδ dist(π(z)g,G(g,Λ)). We can conclude the proof by
taking α = min(c,

√
2c′

‖A‖op ), where Λ = AZ2.

IV. FINAL REMARKS

We conclude with two remarks. Firstly, under stronger
assumptions on the window function, an explicit estimate for
α from Theorem I.2 can be computed on a neighbourhood of
the lattice points.

Remark IV.1. [5, Thm 5.4] Let Λ ⊂ R2 be a lattice (not
necessarily of rational density) and let g ∈ H1(R) be such
that (g,Λ) is an orthonormal basis for its closed linear span
G(g,Λ). Then there exists some ε > 0 such that

dist(π(z)g,G(g,Λ)) ≥ π

2·
√
‖g′‖2

L2+‖2πiXg‖2
L2

dist(z,Λ)

for all z in an ε neighbourhood of the lattice points
in Λ. If additionally g, ĝ ∈ H2(R), then ε can
be chosen as ε := π

2∆
√
‖g′‖2

L2+‖2πiXg‖2
L2

, where

∆ := 3π2 max(‖X2g‖L2 , ‖ω2ĝ‖L2 , ‖Xg′‖L2).

Secondly, the result of Proposition III.1 is a stronger version
of the weak Balian-Low theorem in the case of g ∈ H1(R)
and Λ having rational density. In this setting, Proposition III.1
shows that no real linear combination of g′ and iXg can be an
element of G(g,Λ). The same argument can be made for the
dual window g̃ which is also in H1(R) and is also a generator
for G(g,Λ).

Theorem IV.2 (Weak BLT). [9, Thm 8] Let g ∈ L2(R) and
Λ ⊂ R2 be a lattice such that (g,Λ) is a Riesz basis for its
closed linear span G. Let g̃ be the dual window of g. Then at
least one of g′, Xg, g̃′, Xg̃ is not contained in G.
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