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Abstract—The goal of derivative sampling is to reconstruct a
signal from the samples of the function and of its first-order
derivative. In this paper, we consider this problem over a shift-
invariant reconstruction subspace generated by two compact-
support functions. We assume that the reconstruction subspace
reproduces polynomials up to a certain degree. We then derive
a lower bound on the sum of supports of its generators. Finally,
we illustrate the tightness of our bound with some examples.

I. INTRODUCTION

The generalized sampling framework was introduced by
Papoulis in [1] as an extension of Shannon’s celebrated
sampling theorem [2]. It aims at the reconstruction of a band-
limited signal from the samples of its response to a set of linear
shift-invariant systems [3]–[8]. An important special case of
Papoulis’s framework is derivative sampling, where the linear
systems are assumed to be differentiators of certain degrees
[3], [9]–[12].

While the pioneering works on derivative sampling were
focused on recovering band-limited functions [9], [10], Unser
and Zerubia proposed a generalized sampling framework for
signals without this constraint [13], [14]. Here, we consider
their framework for derivative sampling by performing the re-
construction over a finitely generated shift-invariant subspace
of L2(R). The structure of such subspaces has been investi-
gated by de Boor et al. [15], [16]. This includes reconstruction
over spline spaces and wavelets; these schemes have been
shown to outperform classical methods [17]–[19].

We consider the problem of finding an approximation f̃ ∈ V
of a function f : R→ R given the regular samples {f(k)}k∈Z
and {f ′(k)}k∈Z of the function and of its derivative. The
approximated function f̃ lies in a shift-invariant subspace V
generated by two functions (minimum number of required
generators). We ask that it be consistent with the given
samples, so that

f̃(k) = f(k), f̃ ′(k) = f ′(k), ∀k ∈ Z. (1)

The complexity of the reconstruction algorithm is in direct
relation with the support size of the generators. Consequently,
it is desirable to find generators of shortest support. The other
important feature in this scheme is the approximation power
of the reconstruction algorithm. This is known to be related to
the polynomial reproducibility of the reconstruction subspace
[16], [20].

In this paper, we show that the ability to reproduce poly-
nomials come with a lower bound on the sum of supports
of the generators of the reconstruction subspace. This bound

determines a fundamental trade-off between the two desirable
properties of the space.

The paper is organized as follows: In Section II, we for-
mulate the problem and explore the reconstruction algorithm.
We then propose and prove our main result in Section III.
Finally, in Section IV, we discuss our theorem and provide
some examples.

II. PROBLEM FORMULATION

The subspace V ⊆ L2(R) is said to be (integer) shift-
invariant if, for any f ∈ V and any integer shift value k ∈ Z,
f(· − k) ∈ V . For a funtion φ ∈ L2(R), the space generated
by φ is denoted by S(φ) and is defined as [15]

S(φ) = Span ({φ(· − k)}k∈Z) ⊆ L2(R). (2)

Similarly, the space generated by the finite collection
of functions φ1, φ2, . . . , φN ∈ L2(R) is denoted by
S(φ1, φ2, . . . , φN ) and is defined as

S(φ1, φ2, . . . , φN ) = S(φ1) + S(φ2) + · · ·+ S(φN ). (3)

Throughout this paper, we assume the joint Riesz condition
for the generator functions φn ∈ L2(R) [21]. It requires the
existence of positive constants m,M ∈ R+ such that, for
any collection of sequences an[·] = (an[k])k∈Z ∈ `2(Z) for
n = 1, 2, . . . , N , we have that

m‖~a‖`2 ≤

∥∥∥∥∥
N∑

n=1

∑
k∈Z

an[k]φn(· − k)

∥∥∥∥∥
L2

≤M‖~a‖`2 , (4)

where ~a[k] = (a1[k], a2[k], . . . , aN [k]) and ‖~a‖`2 =(∑N
n=1 ‖an‖2`2

) 1
2

. This condition ensures the unique and
stable representation

f(·) =

N∑
n=1

∑
k∈Z

an[k]φn(· − k), ∀n : an[·] ∈ `2(Z) (5)

for any f ∈ S(φ1, φ2, . . . , φN ).
To ensure a one-to-one correspondence, we pick the re-

construction space V = S(φ1, φ2) with the two generators
φ1, φ2 ∈ L2(R). In addition to the joint Riesz condition
on φ1 and φ2, derivative sampling assumes at least some
smoothness on the elements of the reconstruction subspace. To
be precise, we assume that the φi are differentiable functions
with continuous derivative (i.e., φ1, φ2 ∈ C1(R)). We also
assume that the target function along with its derivative are L2

functions. In other words, we assume that the target function
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lies in the Sobolev space of order 1 which is denoted as
W 1

2 (R) [22].
The goal of the reconstruction algorithm is to find the

coefficients (an[k])k∈Z ∈ `2(Z) for n = 1, 2 such that, for
all ` ∈ Z,

f(`) =
∑
k∈Z

a1[k]φ1(`− k) +
∑
k∈Z

a2[k]φ2(`− k),

f ′(`) =
∑
k∈Z

a1[k]φ′1(`− k) +
∑
k∈Z

a2[k]φ′2(`− k). (6)

By defining ~f [k] = (f(k), f ′(k)) and ~φ[k] = (φi[k], φ′i[k]) for
k ∈ Z, we can rewrite (6) in vectorial form as

~f [`] = a1 ∗ ~φ1[`] + a2 ∗ ~φ2[`], ∀` ∈ Z, (7)

where the convolution operator applies component-wise. We
denote the z-transform of the sequence c[k] as C(z). Then by
taking the z-transform of (7), we obtain that

~F (z) = A1(z)~Φ1(z) +A2(z)~Φ2(z). (8)

A crucial assumption for derivative sampling is the in-
vertibility of the matrix Φ(z) =

[
~Φ1(z) ~Φ2(z)

]
for all

z ∈ C with |z| = 1. The inverse matrix Φ−1(z) specifies
a digital reconstruction filter ~a[k] =

(
H ∗ ~f

)
[k], where

~a[k] = (a1[k], a2[k]) and H = [hi,j ] is the inverse z-transform
of Φ−1(z). This yields

ai[k] = hi,1 ∗ f [k] + hi,2 ∗ f ′[k] (9)

for i = 1, 2. The filter H is not necessarily FIR. However,
it can be implemented efficiently using recursive methods
[17]. Its computational complexity is also proportional to the
support of φ1, φ2. Note that the coefficients ai[k] are uniquely
determined from (9). Hence, the consistent-approximation
problem has a unique solution in the space S(φ1, φ2).

Ideally, we are looking for a scheme where H is the identity
filter, which translates into generators being interpolatory.
Specifically, a pair of generators ~φint = (φint,1, φint,2) is said
to be interpolatory if, they satisfy (7) with ~a[k] = ~f [k] for all
k ∈ Z. To construct such generators, we simply need to apply
the digital filter HT (the inverse z-transform of Φ−T ) on the
original generators ~φ, which results in

~φint(x) =
∑
k∈Z

HT [k]~φ(x− k). (10)

This procedure yields the unique intepolatory generators of the
space. However, the resulting generators are not necessarily
compactly supported.

III. MAIN RESULT

An important property of the reconstruction subspaces is
their ability to reproduce polynomials.

Definition 1. We say that the space V = S(φ1, φ2, . . . , φN )
reproduces polynomials of degree up to M if, for all m =

0, 1, . . . ,M , there exist sequences of coefficients (p
(m)
n [k])k∈Z

(not necessarily in `2(R)) such that

xm =

N∑
n=1

∑
k∈Z

p(m)
n [k]φn(x− k), ∀x ∈ R\{0}. (11)

Fig. 1. Two possible cases for the intersection of I1 and I2. Case 1: an
interval is completely contained in I1,T1

and I2,T2
for some T1 and T2.

Case 2: the intersection is trivial.

Our main result is a lower bound on the support of the
generators of a space that has a certain degree of polyno-
mial reproducibility. This problem was originally studied by
Schoenberg for the single generated subspace V = S(φ) [23].
For an arbitrary number of generators however, the question
has remained unsolved so far. In Theorem 1, we extend the
result of Schoenberg to the case of two generators and propose
a lower bound on |Supp(φ1)|+ |Supp(φ2)|.

Theorem 1. Let V = S(φ1, φ2) ⊆ L2(R) be a shift-invariant
with the ability to reproduce polynomials of degree up to M .
Then, |Supp(φ1)|+ |Supp(φ2)| ≥M + 1.

Proof. We prove the theorem by contradiction. Assume that
V = S(φ1, φ2) can reproduce polynomials of degree up
to M and |Supp(φ1)| + |Supp(φ2)| < M + 1. This im-
plies that both φ1 and φ2 are indeed compactly supported
functions. Denote their support by Supp(φ1) = [x1, y1] and
Supp(φ2) = [x2, y2], respectively. We then consider the
natural decompositions

|Supp(φi)| = yi − xi = pi + ri pi ∈ Z, ri ∈ [0, 1), (12)

for i = 1, 2. Now, define the intervals Ii,T = [T +xi +ri, T +
xi + 1], and Ji,T = [T + xi, T + xi + ri] for i = 1, 2 and all
T ∈ Z. These are equidistant intervals of lengths (1− ri) and
ri, respectively.

We can readily check that, for any a[·] ∈ `2(Z),

∀x ∈ Ii,T :
∑
k∈Z

a[k]φi(x− k) =

T∑
k=T−pi+1

a[k]φi(x− k),

∀x ∈ Ji,T :
∑
k∈Z

a[k]φi(x− k) =

T∑
k=T−pi

a[k]φi(x− k).

(13)

Finally, we define Ii =
⋃

T∈Z Ii,T and Ji =
⋃

T∈Z Ji,T for
i = 1, 2. We now consider the problem in two cases (In Figure
1, we illustrate the cases visually):

Case 1: There exist T1, T2 ∈ Z such that U = I1,T1 ∩ I2,T2

is a nontrivial interval.
Consider the space of polynomials of degree up to M over

the interval U and denote it as Π(U). On one hand, Π(U) is an
(M + 1)-dimensional vector space spanned by the monomials
xm for m = 0, 1, . . . ,M . On the other hand, from (11)
and (13), we know that Π(U) is spanned by the union of
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Fig. 2. Minimal-support generators for the space S2 +S3 (Hermite splines).

{φ1(· − k)}T1

k=T1−p1+1 and {φ2(· − k)}T2

k=T2−p2+1. Therefore,
the number of generators should be at least M+1. This yields
that

p1 + p2 ≥M + 1. (14)

Moreover, we have |Supp(φ1)|+ |Supp(φ2)| ≥ p1 +p2 which
together with (14), results in a contradiction with the original
assumption.

Case 2: There are only countably many points in I1 ∩ I2
(the intersection is trivial). This implies that |I1,0|+ |I2,0| ≤ 1.
Simplifying this inequality leads to

r1 + r2 ≥ 1. (15)

Moreover, there exist T1, T2 ∈ Z such that U = I1,T1 ∩ J2,T2

is a nontrivial interval. Similar to Case 1, we consider Π(U).
Then, Eq. (11), and (13) imply that Π(U) is spanned by p1 +
(p2 + 1) functions. Hence,

p1 + p2 + 1 ≥M + 1. (16)

Together with (15), we finally obtain that

|Supp(φ1)|+ |Supp(φ2)| ≥M + 1. (17)

IV. DISCUSSION

In this section, we discuss our theorem by providing some
examples. We consider spline spaces; they have been shown to
be desirable from both theoretical and practical aspects [17],
[24].

A spline of degree n is a piecewise polynomial function
of degree n that has (n − 1) continuous derivative [23]. It is
called a cardinal spline if the junctions (known as knots) are
located on the integer grid. The space of cardinal splines of
degree n is denoted by Sn.

The spline space Sn has the minimal-support generator βn:
the B-spline of degree n. Its support (n + 1) is known to be
the smallest among all cardinal splines [23]. Along with other

Fig. 3. Minimal-support generators for the space S3 + S4. The sum of
supports is 5. It is tight due to our theorem. The sum of the supports of the
canonical generators β3 and β4 is 9, which is nearly twice the optimal value.

properties, their short support makes them a powerful tool in
signal processing and sampling [25], [26].

As mentioned earlier, a single cardinal spline space has not
sufficiently many degrees of freedom for derivative sampling.
It is then natural to consider the sum of two consecutive spline
spaces Sn−1 + Sn. We assume that n ≥ 3 in order to have
continuous derivatives, which is crucial for this application.
Since Sn reproduces polynomials of degree n, the same
obviously holds true for Sn−1 + Sn.

The canonical generators of Sn−1 + Sn are βn−1 and βn.
While these B-splines are the minimal-support generators of
Sn−1 and Sn separately, their support is not optimal for
generating the sum space Sn−1 +Sn. Their sum of support is
n+ (n+ 1) = 2n+ 1, which is almost twice the lower bound
(n+ 1) obtained from Theorem 1.

In Figure 2 and Figure 3, we plot the minimal-support
generators for the sum of spline spaces S2 +S3 and S3 +S4,
respectively. Note that the equality case of our bound happens
in these examples. We conjecture that our bound is tight for
the sum of spline spaces Sn−1 + Sn for all n ≥ 3.

Finally, it is worth to mention that the case S2 + S3 is
of special importance. The corresponding pair of generators
shown in Figure 2 are the unique interpolatory generators of
S2 + S3 (obtained from (10)). These generators are known
as the Hermite splines [27]. Being interpolatory while having
the smallest support makes them a powerful tool in derivative
sampling and related applications such as curve parametriza-
tion [28].

V. CONCLUSION

We have considered derivative sampling over a shift-
invariant reconstruction space generated by two compactly
supported functions. The space is assumed to reproduce poly-
nomials up to a certain degree. We have showed that the
polynomial reproducibility imposes a lower bound on the sum
of supports of the generators. Then, we have illustrated the
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remarkable tightness of our bound in the sum of spline spaces.
A generalization of our theory to higher-order derivatives and
also the construction of the optimal spline generators are
possible research directions.
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