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Abstract—We investigate the construction of multidimensional
prolate spheroidal wave functions using techniques from Clifford
analysis. The prolates are defined to be eigenfunctions of a certain
differential operator and we propose a method for computing
these eigenfunctions through expansions in Clifford-Legendre
polynomials. It is shown that the differential operator commutes
with a time-frequency limiting operator defined relative to balls
in n-dimensional Euclidean space.

I. INTRODUCTION

In 1964 [1], the higher dimensional version of the of prolates
were studied and constructed. After polar coordinates were
employed, part of the construction involved determining the
eigenvalues of the differential operator Mc given by

Mc(u)(t) = (1− t2)
d2u

dt
− 2t

du

dt
+ (

1
4 −N

2

t2
− c2t2)u = 0,

(1)
the solutions of which form the radial part of the higher
dimensional prolates. The operator has a singularity at the
origin, causing instabilities. Also it is valuable to mention
that, in [2], the prolate spheroidal wave functions has been
constructed by definition of a new Sturm-Liouville differential
operator.

Clifford analysis is a means through which many of the
fundamental theorems and techniques of complex analysis can
be lifted to higher dimensions (see [3]). In this paper we
study the higher-dimensional prolate spheroidal wave func-
tions (PSWFs) thorough the lens of Clifford analysis.

II. CLIFFORD ANALYSIS

Let {e1, . . . , em} be the standard basis for m-dimensional
euclidean space Rm. The non-commutative multiplication in
the Clifford algebra Rm built over Rm is governed by the rules

e2j = −1 j = 1, · · · ,m
eiej = −ejei i 6= j.

A canonical base for Rm is obtained by considering for any
ordered set A = {j1, j2, · · · , jh} ⊂ {1, · · · ,m} = M, the
element eA = ej1ej2 · · · ejh , e∅ = 1. For example, each
λ ∈ R2, may be written as λ = λ0 + λ1e1 + λ2e2 + λ12e1e2,
where λi ∈ R. The conjugation λ of λ =

∑
A λAeA ∈ Rm

is given by λ =
∑
A λAeA where ej = −ej , ē∅ = e∅, and

αβ = βα for all α, β ∈ Rm. The Euclidean space Rm is

embedded in the Clifford algebra Rm by identifying the point
x = (x1, · · · , xm) ∈ Rm with the 1-vector x =

∑m
j=1 ejxj .

It should be noted that [λ]0 is the scalar part of the Clifford
number λ. The product of two 1-vectors splits up into a
scalar part and a 2-vector (also called the bivector, part):
xy = −〈x, y〉 + x ∧ y where 〈x, y〉 =

∑m
j=1 xjyj and

x ∧ y =
∑
i<j eiej(xiyj − xjyi). Note also that if x is a

1-vector, then x2 = −〈x, x〉 = −|x|2.

Definition 1. Let f : Rm → Rm be defined and continuously
differentiable in an open region Ω of Rm. The Dirac operator
∂x is defined on such functions by

∂xf =

m∑
j=1

ej∂xj
f.

We also allow the Dirac operator to act of the right in the
sense that f∂x =

∑m
j=1 ∂xj

fej . f is said to be left (resp.
right) monogenic on Ω if ∂xf = 0 (resp. f∂x = 0) on Ω. If
f is left-and right monogenic, we say f is monogenic. The
Dirac operator factorises the Laplace operator in the sense that

∆m = −∂2x. (2)

Definition 2. A left (resp. right) monogenic homogeneous
polynomial Pk of degree k (k ≥ 0) in Rm is called a left
(resp. right) solid inner spherical monogenic of order k. The
set of all left (resp. right) solid inner spherical monogenics of
order k will be denoted by M+

l (k), respectively M+
r (k).

Lemma 1. Let x =
∑m
j=0 xjej . For Pk ∈M+

l (k) and s ∈ N
the following fundamental formula holds:

∂x[xsPk] =

{
−sxs−1Pk for s even
−(s+ 2k +m− 1)xs−1Pk for s odd.

For the proof, the reader is referred to [3].
The Rm-valued inner product of the functions f, g : Rm →

Rm is given by

〈f, g〉 =

∫
Rm

f(x)g(x)dV (x),

where dV is the Lebesgue measure on Rm. The associated
norm is given by ‖f‖2 = [〈f, f〉]0. The unitary right Clifford-
module of Clifford algebra-valued measurable functions on



Rm for which ‖f‖2 < ∞ is a right Hilbert Clifford-module
which we denote by L2(Rm,Rm). The multi-dimensional
Fourier transform F is given by

Ff(ξ) =
1

(2π)m/2

∫
Rm

exp(−i〈x, ξ〉)f(x)dV (x) (3)

for f ∈ L1(Rm,Rm) and may be extended unitarily to
L2(Rm,Rm).

Theorem 2. (Clifford-Stokes theorem) Let f, g ∈ C1(Ω).
Then for each compact set C ⊂ Ω, one has∫

∂C

f(x)n(x)g(x) dσ(x) =

∫
C

[(f∂x)g + f(∂xg)] dV (x)

where n(x) is the outward pointing unit normal on ∂C and
dσ is the surface area measure on ∂C.

Proof. For the proof see [3].

III. LEGENDRE POLYNOMIALS

Definition 3. Let B(1) be the closed unit ball in Rm and
α ∈ R with α > −1. Then the operator Dα is defined on
continuous functions f : B(1)→ Rm by

Dαf(x) = (1 + x2)−α∂x((1 + x2)α+1f(x)). (4)

Definition 4. Let n ∈ N, and let Pk ∈ M+
l (k) be fixed.

Then we define Clifford-Legendre polynomials C0
n,m(Pk)(x)

as follows:

C0
n(Pk)(x) = D0D1 · · ·D+n−1(Pk(x)). (5)

It is shown in [3] that

C0
n(Pk)(x) = C0

n,k(x)Pk(x) (6)

with C0
n,k ∈ Pn = spanRm

{xs : s ∈ N, s ≤ n, x ∈ R(m)},
the space of polynomials having degree less than or equal to
n. C0

n,k has real coefficients depending on k and takes value
in R0

m ⊕ R1
m.

Theorem 3. (Rodrigues’ Formula) The Legendre polynomials
C0
n(Pk)(x) are also determined by

C0
n(Pk)(x) = ∂nx ((1 + x2)nPk(x)) (7)

Proof. For the proof see [3].

Next we note that the Clifford-Legendre polynomials are
eigenfunctions of a second order differential equation.

Theorem 4. For all n, k ∈ N, there exists a real constant
C(0, n, k) such that

D0∂x(C0
n(Pk)(x)) = C(0, n, k)C0

n(Pk)(x),

or equivalently,

∂2xC
0
n(Pk)(x)− 2x∂xC

0
n(Pk)(x)

−C(0, n, k)C0
n(Pk)(x) = 0. (8)

Proof. For the proof see [3].

IV. RESULTS

In this section, we start the process of building multi-
dimensional prolate spheroidal wave functions.

Theorem 5. The Clifford-Legendre polynomials admit the
following explicit representations:

C0
2N (Pk)(x) =

22N (2N)!

N !

N∑
j=0

[(
N

j

)
×

Γ(j + k + m
2 +N)

Γ(j + k + m
2 )

(−1)j |x|2jPk(x)

]
(9)

and

C0
2N+1(Pk)(x) = −22N+1(2N + 1)!

N !

N∑
j=0

[(
N

j

)
Γ(j + k + m

2 +N + 1)

Γ(j + k + m
2 + 1)

(−1)j |x|2jxPk(x)

]
. (10)

Proof. By Lemma 1,

∂2x(x2jPk(x)) = 2j(2j + 2k +m− 2)x2j−2Pk(x),

and

∂2x(x2j+1Pk(x)) = 2j(2j + 2k +m)x2j−1Pk(x).

Therefore, when n = 2N + 1 is odd, we heve

C0
2N+1(Pk)(x) = ∂2N+1

x [(1 + x2)2N+1Pk(x)]

= ∂2N+1
x [

2N+1∑
j=0

(
2N + 1

j

)
|x|2jPk(x)]

= [

2N+1∑
j=0

(
2N + 1

j

)
∂2N−1x [(−2j)(−(2j − 1

+ 2k +m− 1))x2j−2Pk(x)]]

= [

2N+1∑
j=0

(
2N + 1

j

)
[(2j)(2j + 2k +m− 2)(2j − 2)

(2j + 2k +m− 4)∂2N−3x x2j−5xPk(x)]]

= [−
2N+1∑
j=N

(
2N + 1

j

)
22N−1[(j)(j − 1) · · · (j − (N − 1))]

× [(j + k +
m

2
− 1) · · · (j + k +

m

2
− (N − 1))]

× ∂2xx
2j−2NxPk(x)]

= −
N+1∑
j=0

(
2N + 1

j +N

)
22N+1[

(j +N)!

(j − 1)!

×
(j + k + m

2 +N − 1)!

(j + k + m
2 − 1)!

]x2j−2xPk(x)

= −22N+1(2N + 1)!

N !

N∑
j=0

(
N

j

)
Γ(j + k + m

2 +N + 1)

Γ(j + k + m
2 + 1)

(−1)j |x|2jxPk(x).



The proof is similar when n is even.

The representation above may be used to provide a Bonnet-
type formula for the Clifford-Legendre polynomials, i.e., a
formula that expresses xC(0)

n (x) as a linear combination of
C

(0)
n−1(x) and C(0)

n+1(x).

Theorem 6. [Bonnet formula for Clifford-Legendre polynomi-
als]
(a) If n is odd,

xC0
2n+1(Pk)(x) = αn,kC

0
2n+2(Pk)(x)+βn,kC

0
2n(Pk)(x),

(11)
where αn,k = −m

4(m
2 +2n+k+1) , βn,k =

2(2n+1)(m
2 +n+k)

(m
2 +2n+k+1) ,

(b) If n is even,

xC0
2n(Pk)(x) = α′n,kC

0
2n+1(Pk)(x)+β′n,kC

0
2n−1(Pk)(x),

(12)
where α′n,k =

−(m
2 +n+k)

2(2n+1)(m
2 +2n+k) , β′n,k = 4n2

(m
2 +2n+k) .

For the proof, the reader is referred to [4].

V. MULTI-DIMENSIONAL PROLATES

Definition 8: Given c > 0, we define three operators Lc and
Gc on L2(B(1),Rm) by

Gcf(x) = χB(x)

∫
B

e2πic〈x,y〉f(y)dy, (13)

and

Lcf(x) = ∂x((1− |x|2)∂xf(x)) + 4π2c2|x|2f(x). (14)

Strictly speaking, Lc is defined on a dense subspace of
L2(B̄(1),Rm). The m-dimensional Clifford prolates are de-
fined to be the eigenfunctions of Lc. Here we aim to describe
an algorithm for their computation and reveal relationships
between Lc and certain time-frequency limiting operators
defined relative to balls in Rm.

Let {Yk,j}dkj=1 be an orthonormal basis for M+
l (k). Then

the Clifford-Legendre polynomials

{Rn,j,k = C0
n(Yk,j); n ≥ 0, k ≥ 0, 0 ≤ j ≤ dk}

(where dk is the dimension of M+
l (k)) form an orthonormal

basis for L2(B(1),Rm). Suppose then that f as an eigenfunc-
tion of Lc, i.e., Lcf = fχ for some χ ∈ Rm. We may write

f =

∞∑
i,k=0

dk∑
j=0

C0
i (Yk,j)bi,k,j , (15)

for some constants bi,k,j ∈ Rm. Then

Lcf(x) =
∑
i,k,j

Lc[C
0
i (Yk,j)(x)]bi,k,j

=
∑
i,k,j

[C(i, k)C0
i (Yk,j)(x) + 4π2c2x2C0

i (Yk,j(x)]. (16)

A double application of the Bonnet formula gives

x2C0
n(Yk,j(x)) = an,kC

0
n+2(Yk,j(x)) + bn,kC

0
n(Yk,j(x))

+ cn,kC
0
n−2(Yk,j(x)), (17)

for real constants an,k, bn,k and cn,k. Substituting (17) into
(16) we find that f is an eigenfunction of Lc with eigenvalue
χ if and only if b = (bi,k,j) is an eigenvector of a multilinear
mapping A which is tri-diagonal in the i-variable:

Ab = bχ.

Computation of these eigenvectors, and substitution into (15)
gives eigenfunctions of Lc.

The connections between the PSWFs and the eigenfunctions
of a multi-dimensional time-frequency limiting operator is now
of interest, in particular, the commutation of these operators..

Theorem 7. The operator Lc, defined at (14), is self-adjoint.

Proof. With an application of the Clifford-Stokes formula and
the observation that (1− |x|2) = 0 for x ∈ ∂B, we have

〈f, Lcg〉 =

∫
B

f(x)[∂x((1− |x|2)∂xg(x))

+ 4π2c2|x|2g(x)]dx

= −
∫
B

((f(x)∂x)(x)(1− |x|2)∂xg(x))dx

+

∫
B

4π2c2|x|2f(x)g(x)dx

= −{
∫
∂B

((1− |x|2)f(x)∂x)n(x)g(x)dσ

−
∫
B

([(1− |x|2)(f(x)∂x)]∂x)g(x)dx}

+

∫
B

4π2c2|x|2f(x)g(x)dx

=

∫
B

(∂x[(1− |x|2)(∂xf(x))])g(x)dx

+

∫
B

4π2c2|x|2f(x)g(x)dx

=

∫
B

Lcf(x)g(x)dx = 〈Lcf, g〉

which completes the proof.

Theorem 8. The operators Lc and Gc commute, i.e., LcGc =
GcLc.

Proof. By the definitions of Lc and Gc and the self-adjointness



of Lc, we have

GcLc(f(x)) = χB(x)

∫
B

e2πic<x,y>[Lcf(y)]dy

=χB(x)

∫
B

[∂y((1− |y|2)∂y(e−2πic<x,y>))

+4π2c2|y|2e−2πic<x,y>]f(y)dy

=χB(x)

∫
B

[(1− |y|2)(4π2c2|x|2e−2πic<x,y>)

+4πicyxe−2πic<x,y> + 4π2c2|y|2e−2πic<x,y>]f(y)dy

=χB(x)

∫
B

[4π2c2|x|2(e2πic<x,y> − 1

4π2c2
∂2x(e2πic<x,y>))

−4πicxye2πic<x,y> + ∂2x(e2πic<x,y>)]f(y)dy

=χB(x)

∫
B

[4π2c2|x|2e2πic<x,y> − |x|2∂2x(e2πic<x,y>)

−2x∂xe
2πic<x,y> + ∂2x(e2πic<x,y>)]f(y)dy

=χB(x)

∫
B

[(1− |x|2)∂2x(e2πic<x,y>)− 2x∂x(e2πic<x,y>)

+c2|x|2(e2πic<x,y>)]f(y)dy = LcGc(f(x)).

Theorem 9. The operators G∗c and G∗cGc commute with Lc.

Let Q, Pc be the orthogonal projections on L2(Rm,Rm)
defined by

Qf(x) = χB(1)(x)f(x);

Pcf(x) =

∫
Rm

f(y)Kc(x− y) dy

where Kc(x) =
∫
B(c)

e2πic〈x,y〉 dy. The range of Q is the
collection of L2 functions that are supported on the ball B(1)
of radius 1 and the range of Pc is the collection of L2 functions
whose Fourier transform are supported on the ball B(c) of
radius c. We note that the operator G∗cGc is a multiple of the
time-frequency operator QPc and conclude from Theorem 9
that QPc commutes with Lc.

VI. CONCLUSION AND FUTURE WORK

Through consideration of Clifford-Legendre polynomials
and proof of an associated Bonnet formula, we developed in
this paper sufficient theory to enable the construction of mul-
tidimensional Clifford-valued PSWF’s, defined as the eigen-
functions of a self-adjoint differential operator Lc involving
the Dirac operator. We defined time and frequency projections
Q and Pc and showed that the self-adjoint operator QPc
commutes with Lc. It is yet to be shown that the PSWFs are
also the eigenfunctions of QPc as there is currently insufficient
theory surrounding the linear algebra of Clifford modules to
assert that commuting self-adjoint operators share a common
eigenbasis – as is the case in Hilbert spaces. Approximation
properties of these functions will be explored as has been done
in one dimension by Shkolnisky [5] and Xiao, Rokhlin and
Yarvin [6].
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