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Abstract—A family of regions that cover the time-frequency
plane is considered, and from each region, (possibly irregu-
lar) sampling points are taken, thereby generating local time-
frequency systems for each component region. This results to
“local patches” of Gabor systems which are then put together. In
this work, we will be looking at different conditions in which the
resulting quilted system, as well as its projection onto subspaces
of eigenfunctions of time-frequency localization operators, is to
exhibit a frame property.

I. INTRODUCTION

Adaptive time-frequency representations [2] have received

significant attention in the past several years. With the desire to

circumvent some rather stringent properties of traditional time-

frequency representations, such as the fixed time-frequency

resolution of regular Gabor frames, various constructions have

been introduced that allow adaptivity in the time-frequency

representation of signals, e.g. [4], [5], [1], [9], to name a few.

In [4], Dörfler introduced the notion of quilted Gabor

frames, where a family of Gabor frames and an admissible

covering of the time-frequency plane are considered, and on

each region of the covering a Gabor frame is assigned, thus

a local Gabor system is obtained for each region which are

then “quilted” to form a global system. In this way, it would

be possible to have different resolutions for different time-

frequency components of a signal. Frame conditions for certain

cases were then investigated. In this work, we shall present a

similar construction that does not assume the pre-existence

of Gabor frames, using only assumptions on the density of

the sampling points and regularity of the regions that form a

covering of the time-frequency plane.

We also show a frame property for a union of possibly

irregular local Gabor systems, with each one projected onto

a subspace of eigenfunctions of a time-frequency localization

operator. These subspaces have optimal time-frequency con-

centration in the corresponding region on the time-frequency

plane. In contrast to similar frames that were studied in [13],

the local Gabor systems that we consider need not come from

a frame for L2(R). Finally, we prove a replacement theorem

similar to that in [4] but again, there is no assumption that

the local system used in the replacement comes from a Gabor

frame.

II. TIME-FREQUENCY ANALYSIS

We recall in this section some definitions and properties

of the short-time Fourier transform, Gabor frames, and time-

frequency localization operators. For a detailed discussion on

time-frequency analysis, we refer the reader to [8].

A. The Short-Time Fourier Transform and Gabor Frames

The short-time Fourier transform (STFT) of f ∈ L2(Rd)
with respect to ϕ is given by

Vϕf(z) =

�

Rd

f(t)ϕ(t− x) e−2πiω·tdt = hf,π(z)ϕi,

where z = (x,ω) ∈ R
2d and π(z) is the time-frequency shift

operator given by π(z)f = f(t− x) e2πiω·t. The STFT is an

isometry from L2(Rd) to L2(R2d), i.e. kVϕfk2 = kϕk2kfk2,

and inversion for the case where kϕk2 = 1 is given by

f = V∗
ϕ Vϕf =

��

R2d

Vϕf(z)π(z)ϕ dz, (1)

where the vector-valued integral above and similar expressions

in the sequel are understood in a weak sense, cf. [8, Sec. 3.2].

The membership of the STFT in L1(R2d) provides a defi-

nition for the modulation space S0(R
d):

S0(R
d) = {f ∈ L2(Rd) : kfkS0 := kVϕ0fk1 < ∞},

where ϕ0(t) = e−πktk2

. This space is a Banach space

continuously embedded on L2(Rd) and L1(Rd), and is isomet-

rically invariant under time-frequency shifts and the Fourier

transform, cf. [7]. Some conditions for membership of f in

S0(R
d) include f being bandlimited and belonging to L1(Rd),

or both fws and f̂ws belonging to L2(Rd), where f̂ is the

Fourier transform of f and ws(t) = (1 + t2)s/2, s > d.

A sequence {ej}j∈J in a separable Hilbert space H is a

frame if there exist positive constants A,B > 0, called lower

and upper frame bounds, respectively, such that for all f ∈ H

Akfk22 ≤
�

j∈J

|hf, eji|2 ≤ Bkfk22.

Given a sequence (not necessarily a frame) {ej}j∈J in H,

the analysis, and frame operators C and S are given by C :
f 7→ {hf, eji}j∈J and S : f 7→ �

j∈J hf, ejiej respectively.

The adjoint C∗ is called the synthesis operator, and it can

be shown that C∗ : {cj}j∈J 7→ �

j∈J cjej and S = C∗C.



Furthermore, if the sequence is a frame, then the associated

frame operator S is invertible, and {S−1ej}j∈J is also a

frame, called the canonical dual frame. Moreover for every

f ∈ H, perfect reconstruction is guaranteed by the following

unconditionally convergent series: f =
�

j∈J hf, S−1ejiej ,
and f =

�

j∈J hf, ejiS−1ej.

Given a window function ϕ ∈ L2(Rd) and a countable point

set Γ ∈ R
2d, the Gabor system G(g,Γ) is given by G(g,Γ) =

{π(λ)g : λ ∈ Γ}. In contrast to the case where Γ is a lattice,

for which G(g,Γ) is called regular Gabor system, the point

set Γ that we consider need not have any special structure,

and the resulting system is called an irregular Gabor system.

We say that G(ϕ,Γ) is a Gabor frame if G(ϕ,Γ) is a frame.

B. Time-Frequency Localization

In this section, we review some results on time-frequency

localization operators cf. [3], [10].

Let Ω be a compact set in R
2d, χΩ the characteristic

function on Ω, and ϕ a window function in L2(Rd), with

kϕk2 = 1. The time-frequency localization operator HΩ,ϕ is

defined by

HΩ,ϕf =

��

Ω

Vϕf(z)π(z)ϕ dz = V∗
ϕ (χΩ Vϕf).

The above integral can be interpreted as the portion of the

function f that is essentially contained in Ω. Given ε > 0, a

function f is said to be (ε,ϕ)-concentrated on Ω if

hHΩ,ϕf, fi =
��

Ω

|Vϕf(z)|2dz ≥ (1− ε)kfk22. (2)

The time-frequency localization operator H is a compact

and self-adjoint operator so we can consider the spectral de-

composition HΩ,ϕf =
�

k∈N
αkhf,ψkiψk, where the eigen-

values αk ∈ [0, 1], k ∈ N are arranged in a decreasing

order and {ψk}∞k=1 are the corresponding orthonormal eigen-

functions. By the min-max theorem for compact, self-adjoint

operators, the first eigenfunction has optimal time-frequency

concentration inside Ω in the sense of (2), i.e.
��

Ω

|Vϕψ1(z)|2dz = max
kfk2=1

��

Ω

|Vϕf(z)|2dz.

If we let VN be the span of the first N eigenfunctions and if

f ∈ VN , so f =
�N

k=1hf,ψkiψk, then

hHΩ,ϕf, fi =
N
�

k=1

αk|hf,ψki|2 ≥ αNkfk22 ,

so that elements in VN are (1− αN ,ϕ)-concentrated on Ω.

III. FRAMES FROM QUILTED LOCAL GABOR SYSTEMS

In this section, we present our construction of adaptive

frames from local, possibly irregular, Gabor systems. Let

λ ∈ Λ be a countable index set, and consider the family

{Ωλ}λ∈Λ of compact subsets of the time-frequency plane R
2d

that satisfy the following:

1)
�

λ∈Λ

Ωλ = R
2d,

2) sup
λ∈Λ

#{r ∈ Λ : Ωr ∩ Ωλ 6= ∅} < ∞.

Any family of sets satisfying the above conditions are called

admissible covers. Our view is to sample finitely many points,

say Fλ ⊂ Ωλ, on each of the compact sets Ωλ with different

associated window function gλ ∈ L2(Rd), and do analysis

on the collated points to obtain the local time-frequency

system {π(pλ)gλ}λ∈Fλ
. Synthesis is then done by doing ‘local

syntheses’ on each of the region, and then summing all of it

up on Λ. That is, we want to ‘quilt’ such systems to generate

a frame for L2(Rd), hence we want constants A,B > 0 such

that for any f ∈ L2(Rd).

Akfk22 ≤
�

λ∈Λ

�

pλ∈Fλ

|hf,π(pλ)gλi|2 ≤ Bkfk22. (3)

Indeed, this construction is quite similar to quilted Gabor

frames [4], or the more general system of Gabor molecules in

[11], however we do not assume that the local time-frequency

systems come from pre-existing Gabor frames.

By adding some moderate hypotheses on the density of the

sample set
�

λ∈Λ Fλ and a uniform decay condition on each

gλ, one can construct the frame bounds on (3). In particular,

let K > 0 and s > 2d, define

Ds,K := {h ∈ L2(Rd) : |Vϕ0h(z)| ≤ K(1 + kzk2)−s/2},
(4)

where ϕ0(t) = e−πktk2

.

The following result, based on [4, Theorem 1], although

originally proven under the assumption of pre-existing Gabor

frames for each local systems, still holds true even when they

are omitted. One needs however, that the sample set
�

λ∈Λ Fλ

form a relatively separated set, that is, one must be able to

write it as a finite union of sets {Sk ⊂ R
2d : k = 1, 2, ..., K}

such that inf{|x − y| : x, y ∈ Sk} > 0 for each k. Now, it

can be shown that supλ∈Λ #Fλ < ∞ implies that
�

λ∈Λ Fλ

is relatively separated.

Theorem III.1. An upper frame bound satisfying B in (3)

exists, provided supλ∈Λ #Fλ < ∞ and {gλ}λ∈Λ ⊆ Ds,K .

Next we give necessary definitions and show some results

regarding the density of the set of sampling points in an-

ticipation for a proof of the existence of the lower frame

bound. In what follows, we assume the same uniform decay

{gλ}λ∈Λ ⊆ Ds,K . The results are based on techniques by

Feichtinger and Sun [6]. We define E ⊆ R
2d to be a rectangle

if it is of the form E =
�d

k=1 Ik where each Ik is an interval

in R. Each Ik of a rectangle E is also called a side of E.

For a δ > 0, we also say that a countable subset Λ ⊂ R
d is a

δ-dense set if
�

λ∈Λ

�∞
k=1

�

λk − δ
2 ,λk + δ

2

�

= R
d.

The following lemma is a generalization of Lemma 3.5 in

[6] to a system with varying windows satisfying (4). The proof

is similar.

Lemma III.2. Let {En}n∈Z2d be a family of rectangles in

R
2d such that

�

n∈Z2d

En = R
2d, and |En ∩Em| = 0 whenever

n 6= m. Suppose further that the side lengths of each En are



no greater than some δ > 0. For each n ∈ Z
2d, let pn ∈

En, and gn ∈ L2(Rd) such that {gn}n∈Z2d ⊆ Ds,K . If 0 <

inf
n∈Z2d

kgnk2 ≤ sup
n∈Z2d

kgnk2 < ∞, and δ is small enough, then

{|En|1/2π(pn)gn : n ∈ Z
2d} is a frame for L2(Rd).

For the main result of this section, we add another assump-

tion on the behavior of the admissible covering {Ωλ}λ∈Λ,

namely, supλ∈ΛDiamΩλ < ∞.

Theorem III.3. For each λ ∈ Λ, let Eλ be a finite family of

rectangles that cover Ωλ such that |Eλ ∩ E′
λ| = 0 whenever

Eλ 6= E′
λ ∈ Eλ. Furthermore, let Fλ be a set of finite points

inside Ωλ satisfying the following properties: supλ∈Λ#Fλ <

∞ and that for any Eλ ∈ Eλ, there exists pλ ∈ Fλ such that

pλ ∈ Eλ ∩Ωλ. If supλ∈Λ DiamΩλ < ∞, then the sample set
�

λ∈Λ Fλ is a δ-dense set for R
2d for some δ > 0.

Consequently, given a family of windows {gλ}λ∈Λ ⊆ Ds,K

with kgλk2 = 1 for all λ ∈ Λ, then for a sufficiently small δ,

the irregular Gabor system
�

λ∈Λ{π(pλ)gλ : pλ ∈ Fλ} is a

frame for L2(Rd).

Proof. Let D := supλ∈Λ DiamΩλ < ∞. Define

r := sup
λ∈Λ

max
Eλ∈Eλ

Diam(Eλ ∩ Ωλ) ≤ D < ∞.

We now show that
�

λ∈Λ

Fλ is 2r-dense. That is, R
2d =

�

λ∈Λ

�

pλ∈Fλ

�2d
i=1[(pλ)i − r, (pλ)i + r]. Hence we let z ∈

R
2d, then z ∈ Ωλ for some λ ∈ Λ, and furthermore

z ∈ Eλ ∩ Ωλ for some Eλ ∈ Eλ by construction. Therefore,

for any pλ ∈ Fλ,

|z − pλ| ≤ max
{Eλ∈Eλ}

Diam(Eλ ∩ Ωλ) ≤ r < ∞,

which implies that for all i ∈ {1, ..., 2d}, |zi − (pλ)i| ≤ r.

Therefore z ∈ �2d
i=1[(pλ)i − r, (pλ)i + r]. Hence we can take

δ := 2r.
Next, let En = nδ + δ[0, 1]2d, where n ∈ Z

2d. Thus

{En}n∈Z2d covers R
2d by rectangles of side lengths δ,

and |En ∩ Em| = 0 whenever n 6= m. Since R
2d =

�

λ∈Λ

�

pλ∈Fλ

�2d
i=1[(pλ)i− δ

2 , (pλ)i+
δ
2 ], then any rectangle

of side length δ will intersect at least one point in
�

λ∈ΛFλ.

Hence for each n ∈ Z
2d, En will intersect with Fλ′ for some

λ′ ∈ Λ, in which case, we set pn = pλ′ and gn = gλ′ .

Therefore by Lemma III.2, for a small enough δ > 0,
we have a lower frame bound A′ > 0 such that for all

f ∈ L2(R2d) A′||f ||22 ≤ �

n∈Z2d |hf, |En|1/2π(pn)gni|2.
Then by Theorem III.1 and supn∈Z2d |En| ≤ δ2d, we have

some B > 0 and A := A′

δ2d
> 0 such that A||f ||22 ≤

�

n∈Z2d |hf,π(pn)gni|2 ≤ �

λ∈Λ

�

pλ∈Fλ
|hf,π(pλ)gλi|2 ≤

B||f ||22, hence
�

λ∈Λ{π(pλ)gλ : pλ ∈ Fλ} is a frame for

L2(Rd).

This shows that for well-behaving regions that cover the

time-frequency plane, one can construct adaptive frames by

taking points inside sufficiently dense ‘grids’ {Eλ∩Ωλ : Eλ ∈
Eλ} in each of the local regions and then ‘quilting’ all the

generated local time-frequency systems.

IV. FRAMES FROM QUILTED TF-LOCALIZED SYSTEMS

In this section we consider quiltings that involve local Gabor

systems projected onto optimally concentrated subspace of a

time-frequency localization operator in each region of interest.

We begin with the following lemma.

Lemma IV.1 ([12, Lemma 4.4]). Consider the time-frequency

localization operator HΩ,ϕ with eigenvalue-eigenfunction

pairs {(αk,ψk)}∞k=1 where ϕ ∈ S0(R), Ω ⊂ R
2 such that

kϕk2 = 1 and |Ω| > 1. Let N ∈ N, FΩ ⊂ Ω be a set of finite

points in Ω, and g ∈ L2(Rd) be another window function such

that kgk2 = 1. If there exists some ν ∈ (0,αN ) such that for

all p ∈ VN = span{ψ1, ...,ψN}

1

#FΩ

�

λ∈FΩ

|hp,π(λ)gi|2 ≥ hHΩ,ϕp, pi− νkpk22
|Ω| , (5)

then there exist A,B > 0 such that for all f ∈ L2(R),

AkPVN
fk22 ≤

�

λ∈FΩ

|hf, PVN
π(λ)gi|2 ≤ BkPVN

fk22. (6)

Remark.

1) It was shown in [12] that with a high and controllable

probability, a sufficiently dense set of local random

samples FΩ inside Ω satisfies inequality (5).

2) If (6) holds, then {PVN
π(λ)g}λ∈FΩ is a frame for VN .

This fact will be used for our subsequent results.

3) It can be shown that in (6), A = #FΩ(αN−ν)
|Ω| and

B = #FΩ are sufficient frame bounds. It can also be

assumed without loss of generality that ν ∈ (0,αN )
satisfies αN − ν ≤ |Ω|.

An immediate application of Lemma IV.1 is when one

considers a family of time frequency localization operators

{HΩµ,ϕ}µ∈Λ where Λ is a countable index set, and the family

{Ωµ}µ∈Λ forms an admissible cover for R2, with ϕ ∈ S0(R)
and kϕk2 = 1. It has been shown in [5] that under some

regularity conditions on the regions Ωµ, and the localization

operators HΩµ,ϕ: for each µ ∈ Λ, there exists Nµ ∈ N and

constants C,D > 0 such that

Ckfk22 ≤
�

µ∈Λ

Nµ
�

k=1

|hf,φ(µ)
k i|2 ≤ Dkfk22 (7)

where for each HΩµ,ϕ, its eigenvalue-eigenvector pairs are

given by
��

α
(µ)
k ,ψ

(µ)
k

��∞

k=1
. The following theorem is a

direct application of inequality (6) along with the norm equiv-

alence (7).

Theorem IV.2. Suppose 2 < infµ∈Λ |Ωµ| ≤ supµ∈Λ |Ωµ|.
If for each µ ∈ Λ, HΩµ,ϕ along with Nµ ∈ N, νµ ∈
(0,α

(µ)
Nµ

), gµ ∈ L2(R), and finite points Fµ ⊂ Ωµ satisfy a

sampling inequality (5) with 0 < infµ∈Λ{α(µ)
Nµ

− νµ} and

0 < infµ∈Λ #Fµ ≤ supµ∈Λ #Fµ < ∞, then the system
�

µ∈Λ

{PVNµ
π(λ)gµ : λ ∈ Fµ} is a frame for L2(R).



Proof. Choose A =
infµ∈Λ #Fµ·infµ∈Λ{α

(µ)
Nµ

−νµ}

supµ∈Λ |Ωµ|
and B =

supµ∈Λ #Fµ. It follows from Remarks 2 and 3 above that

A

Nµ
�

k=1

|hf,ψ(µ)
k i|2 ≤

�

λ∈Fµ

|hf, PVNµ
π(λ)gµi|2

≤ B

Nµ
�

k=1

|hf,ψ(µ)
k i|2.

By (7), and summing the above inequality in µ, the theorem

follows.

Now, let us consider the modified replacement theorem [4,

Theorem 3], whose proof, with proper modifications, holds

almost verbatim.

Theorem IV.3. Let G1 = {ei : i ∈ I} be a frame on L2(Rd),
F1 ⊆ I be a finite subset of I, and G2 = {hj : j ∈ F2} be a

finite subset of L2(Rd).
Suppose A is the lower frame bound for G1, C∗

F1
:

{ci}i∈I ∈ ℓ2(F1) 7→ �

F1
ciei ∈ L2(R), and C∗

F2
:

{cj}j∈F2 ∈ ℓ2(F2) 7→ �

F2
cjhj ∈ L2(R) are the corre-

sponding synthesis operators for G1 and G2 respectively. If

there exists a linear mapping L : ℓ2(F1) → ℓ2(F2) in which

kC∗
F1

− C∗
F2

Lkℓ2(F1)→L2(R) <
A

2
, (8)

then {ei : I \ F1} ∪ {hj : j ∈ F2} is a frame for L2(R).

The next lemma shows that given a region Ω ⊂ R
2, it is

possible to find a larger region Ω∗ ⊇ Ω in which a local linear

sum of time-frequency shifts of a window g by points on Ω
is concentrated on Ω∗.

Lemma IV.4. Let g,ϕ ∈ Ds,K with kgk2 = kϕk2 = 1. Let Ω
be a compact set in R

2 and F1 a finite set of points in Ω. Then

given ε > 0, there exists Ω∗ ⊇ Ω and N ∈ N such that kf −
PVN

fk2 < ε for any f ∈ {�λ∈F1
aλπ(λ)g :

�

λ∈F1
|aλ|2 =

1}, where VN is the subspace of the first N eigenfunctions of

HΩ∗,ϕ.

We will show that some local elements in a Gabor frame in

a region can be replaced by another time-frequency system,

subject to some concentration requirement.

Theorem IV.5. Let g ∈ Ds,K with kgk2 = 1, Γ a countable

set of points in R
2, such that G(g,Γ) is a Gabor frame with

lower frame bound A. Let Ω ⊂ R
2 be compact with finite

points F1 = Ω ∩ Γ. Suppose ϕ ∈ Ds,K , Ω∗ ⊇ Ω, and N ∈ N

are chosen so that HΩ∗,ϕ along with the subspace VN satisfy

the conclusion of Lemma IV.4 in which ε < A
2 . Furthermore

if HΩ∗,ϕ and N along with h ∈ L2(R), and finite points

F2 ⊂ Ω∗ also satisfy the sampling inequality (5) then

{π(λ)g : λ ∈ Γ \ F1} ∪ {PVN
π(µ)h : µ ∈ F2}

is a frame for L2(R).

Proof. We use Theorem IV.3. Let C∗
F1

: {cλ}λ∈F1 7→
�

λ∈F1
cλπ(λ)g and C∗

F2
: {cµ}µ∈F2 7→

�

µ∈F2
cµPVN

π(µ)h be the corresponding synthesis opera-

tors. By hypothesis and Lemma IV.1, {PVN
π(µ)h : µ ∈ F2}

is a frame on VN , and therefore the associated frame operator

SVN
on VN is invertible with inverse TVN

on VN . Moreover,

we define L : ℓ2(F1) → ℓ2(F2) to be the mapping

L : c 7→
��

�

λ∈F1

PVN
cλπ(λ)g, TVN

PVN
π(µ)h

��

µ∈F2

.

(9)

The linearity of L easily follows from the linearity
of PVN

. Proving boundedness is straightforward, with
kLkℓ2(F1)→ℓ2(F2) ≤ √

#F1 ·#F2kTVN
kVN→VN

. Let a =
{aλ}λ∈F1 with kakℓ2 = 1. Then

k(C∗

F1
−C

∗

F2
L)ak2 =

�

�

�

�

�

�

�

λ∈F1

aλπ(λ)g − PVN

�

λ∈F1

aλπ(λ)g

�

�

�

�

�

�

2

< ε.

Therefore k(C∗
F1

−C∗
F2
L)kℓ2(F2)→L2(R) ≤ ε < A

2 as required.
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