
Deep-Sparse Array Cognitive Radar
Ahmet M. Elbir1, Satish Mulleti2, Regev Cohen3, Rong Fu4, and Yonina C. Eldar2

1Department of Electrical and Electronics Engineering, Duzce University, Duzce, Turkey
2Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel

3Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
4Department of Electronic Engineering, Tsinghua University, Beijing, China

E-mail: ahmetelbir@duzce.edu.tr, mulleti.satish@gmail.com, regev.cohen@campus.technion.ac.il,
fu-r16@mails.tsinghua.edu.cn, yonina.eldar@weizmann.ac.il

Abstract—In antenna array based radar applications, it is often
desirable to choose an optimum subarray from a full array to achieve a
balance between hardware cost and resolution. Moreover, in a cognitive
radar system, the sparse subarrays are chosen based on the target
scenario at that instant. Recently, a deep-learning based antenna selection
technique was proposed for a single target scenario. In this paper, we
extend this approach to multiple targets and assess the performance of
state-of-the-art direction of arrival estimation techniques in conjunction
with the proposed antenna selection method. To optimally choose the
subarrays based on the target DOAs, we design a convolutional neural
network which accepts the array covariance matrix as an input and selects
the best sparse subarray that minimizes the error. Once the optimum
sparse subarray is obtained, the signals from the selected antennas are
used to estimate the DOAs. We provide numerical simulations to validate
the performance of the proposed cognitive array selection strategy. We
show that the proposed approach outperforms random sparse antenna
selection and it leads to a higher DOA estimation accuracy by 6 dB.

I. INTRODUCTION

In a cognitive radar system, the resources such as bandwidth and
number of antenna elements are often fixed. These resources are
distributed among different radar systems based on the number of
targets, noise levels, and clutter levels. Specifically, the resources are
adaptively shared based on the current environment of the radars.
For example, [1]–[3] developed cognitive radars where the available
bandwidth is adaptively shared among different radars.

To accurately estimate the direction of arrival (DOA) of the moving
targets, a large number of antennas are required to achieve high
angular resolution. The radar structure with multiple antennas usually
entails dedicated hardware equipment for each radar receive antennas
which results in high cost. To reduce cost and power while obtaining
sufficient performance, sparse array structures have been suggested
where a subarray of the whole antenna array is utilized [4]–[7]. The
use of subarrays allows cognitive operation, e.g., different subarrays
can be selected to look into different directions simultaneously.

Reconfigurable array structures proposed in [4], [8], [9] use an
adaptive switching matrix based on a combinatorial search for an
optimal subarray that minimizes a lower bound on the DOA estima-
tion error. In [10] and [11], the sparse array selection problem is cast
as a convex optimization problem and an optimal antenna subarray
is obtained for DOA estimation. Similarly, [12] selects the sensors in
a distributed, multiple radar scenario through a greedy search with
the Cramér-Rao lower bound (CRB) as a performance metric.

Nearly all of these formulations solve a mathematical optimization
problem or use a greedy search algorithm. However, most of the
antenna selection algorithms proposed in the literature have sub-
optimum solutions [13]. Moreover, optimization-based and greedy-
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based methods have long computation times. To circumvent these
issues, machine-learning based approaches are proposed in [7], [14]–
[16]. In [14], a machine learning approach based on non-linear trans-
formations of order statistics is applied for cognitive radar detection.
A support vector machine (SVM) approach is applied to solve one-
bit DOA estimation problems in [15] and antenna selection problems
in communication scenarios in [16]. As a class of machine learning,
deep learning (DL) has captured much interest recently to address
many challenging problems such as speech recognition, visual object
recognition, and language processing [17]. DL has several advantages
such as low computational complexity while solving optimization-
based or combinatorial search problems. It allows to extrapolate new
features from a limited set of features contained in a training set [15],
[17]. In the context of radar, DL is utilized in waveform recognition
[18], image classification [19] and range-Doppler signature detection.

A DL solution for antenna selection was recently proposed in
[7] for a single target scenario. In this paper, we extend the work
in [7] to multiple targets. Specifically, we introduce a DL-based
approach for sparse array selection in the context of passive sensing
with multiple targets. To that end, we formulate the array selection
problem for multiple targets as a classification task where each
subarray designates a class. As in [7], we train a convolutional neural
network (CNN) for finding the best subarray that leads to minimum
mean-squared-error (MSE). The network input data is the covariance
samples of the received array signal. To generate the training data for
CNN, we compute the CRB for the given measurements and choose
subarrays which lead to DOA estimation with the lowest minimal
bound on the MSE. Hence we consider the minimization of the CRB
as the performance benchmark in generating training sets. As we
consider multiple targets, one can not directly use the CRB computed
in [7]. Instead, in the training phase, we use the CRB for multiple
sources as in [20].

In [7], the focus was on the antenna selection part. In this work,
we compare the performance of two DOA estimation techniques,
used with the proposed antenna selection method. To recover the
DOAs, we exploit the signal sparsity and formulate a LASSO problem
for recovering the signal power from the measurement covariance.
We apply fast iterative soft-thresholding algorithm (FISTA) [21] to
estimate DOAs and compare it with multiple signal classification
algorithm (MUSIC) [22]. We then compare the performance of the
proposed CNN-based subarrays with that of the full array and with
random sub-arrays for different full array configurations. In particular
for the choice of D = 6 out of an N = 16 element array, the full
arrays perform 1 dB better than the subarrays due to a larger array
aperture. Among the subarrays, the CNN-based subarray exhibits
6 dB better DOA estimation accuracy compared with a random
subarray.



II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

Consider an N element phased array whose antennas are located at
{vn}Nn=1 where vn = [xn, yn, zn]T indicates the antenna positions
in a Cartesian coordinate system. Let K independent narrow-band
sources with carrier wavelength λ impinge on the array from distinct
DOAs {Θk}Kk=1 where Θk = (θk, φk) denotes the elevation and
azimuth angle of the kth target respectively.

We denote the complex amplitude of the kth signal at snap-
shot time t as xk(t). Then the measurement vector y(t) =
[y1(t), y2(t), ..., yN (t)]T received by the array can be expressed as

y(t) =

K∑
k=1

a(Θk)xk(t) + w(t), (1)

where a(Θk) is a steering vector whose entries are given by

[a(Θk)]n = exp

{
−j 2π

λ
vT
nκ(Θk)

}
. (2)

Here κ(Θk) = [sin(φk) cos(θk), cos(φk) cos(θk), cos(θk)]T

denotes the target directions and the vector w(t) =
[w1(t), w2(t), ..., wN (t)]T represents additive zero-mean white
Gaussian noise.

We assume the spatial frequencies lie on a grid with M points
where K �M . Thus, the received signal can be written as

y(t) =

M∑
k=1

xk(t)a(Θk) + w(t) = Ax(t) + w(t), (3)

where A = [a(Θ1) a(Θ2) · · ·a(ΘK)] is the array manifold matrix
and x(t) = [x1(t), x2(t), ..., xM (t)]T is a K-sparse vector, that is,
it consists of only K nonzeros out of M . For the sake of clarity,
hereafter we neglect the time index t and write

y = Ax + w. (4)

We further assume the sources x and the noise w to be zero-mean
uncorrelated, i.e., E[xxH ] = diag(p1, p2, ..., pM ), E[wwH ] = pwI
where I is the identity matrix, pk and pw are the powers of the kth
source and of the noise, respectively. Under these assumptions, the
covariance matrix of y can be written as

Ry = E[yyH ] =

M∑
k=1

pka(Θk)a(Θk)H + pwI. (5)

By vectorizing (5), we get the vector r:

r =

M∑
k=1

pkb(Θk) + pwvec(I) = Bp + pwvec(I), (6)

where vec(I) is the vectorization of I into a column stack. Here
B = [b(Θ1) b(Θ2) · · ·b(ΘM )] and b(Θ) = a(Θ) � a(Θ) where
� denotes the Khatri-Rao product. The vector p = [p1, p2, ..., pM ]T

is a K-sparse vector with the same support as x.

B. Problem Formulation

In this work, we aim to reduce the computational cost and energy of
the radar system by utilizing fewer antennas. To that end, we consider
a cognitive scan strategy where at the first scan all N antennas are
active while at subsequent scans a subarray of D < N antennas is
used. To find the optimal subarray, we model the selection of D best
antennas out of N as a classification problem wherein each class
denotes an antenna subarray. Then, we train a CNN to select the best
subarray based on the covariance of the signal received at the first

scan [7]. Given the best subarray, we get upon reception an under-
determined linear system of equations. To solve the latter, we exploit
the signal sparsity and formulate a LASSO problem for recovering
the power signal. Once we obtain the power signal, we can determine
the DOAs by exploiting the fact that the signal x and its power p
share the same support.

III. SPARSE ARRAY SELECTION AND SIGNAL PROCESSING

In this section, we introduce a method for sparse array selection
and for DOA recovery given the chosen array. We first formulate the
array selection as a classification problem and train a CNN to find
the best sparse array based on the covariance matrix of the received
signal following [7]. This allows to adaptively construct a sparse
array. Given the sparse array obtained from the consecutive scans,
we optimize the DOA recovery process.

A. Array Selection

Our aim is to select a D-element subarray from N -element full

array. In this case, there are Q =

(
N
D

)
possible choices. Hence

this can be viewed as a classification problem with Q classes each of
which represents a different subarray. Let Vq

d = {vqxd
, vqyd , v

q
zd} be

the set of the dth antenna coordinates in Cartesian coordinate system
for the qth subarray. Then, the qth class consisting of the positions
of all elements in the qth subarray is Sq = {Vq

1 , . . . ,V
q
D}, and all

classes are given by the set S = {S1,S2, . . . ,SQ}.
To label the training samples, we first compute the sample covari-

ance matrix from L snapshots of noisy observations. Similar to [7],
we use the CRB as a performance metric. However, due to multiple
targets, the expression for the CRB is computed as in [20]. We denote
the CRB as η(Θ,Sq) where Θ ∈ RK denotes the target DOAs for all
subarrays q = 1, . . . , Q. The class labels for the input data indicate
the best array, that is, the array which minimizes the CRB in a given
scenario. Let us define Q̄ as the number of subarrays that provide the
best DOA estimation performance for different directions. Then, Q̄ is
generally much smaller than Q because of the direction of the targets
and the aperture of the subarrays [7]. Hence, we construct a new
set L which includes only those classes that represent the selected
subarrays for different directions L = {l1, l2, . . . , lQ̄}, where Q̄ is
the reduced number of classes: lq̄ is the subarray class that provides
the lowest CRB, namely

lq̄ = arg min
q=1,...,Q

η(Θ,Sq), (7)

for q̄ = 1, . . . , Q̄. Once the label set L is obtained, the input-
output data pairs are constructed as (Ry, z) where z ∈ L is
the label representing the best subarray index for the covariance
input Ry . We summarize the steps for generating the training data
in Algorithm 1. We use the sample covariance matrix as R̂y =
1
L

∑L
l=1 y(t)yH(t), which is generated with a signal-to-noise ratio

SNRTRAIN = 10 log10

(
σ2
s/σ

2
n

)
.

Using the labeled training dataset, we build a trained CNN clas-
sifier. The input of this learning system is the data covariance and
the output is the index of the selected antenna set. Given the N ×L
output Y of the antenna array, the corresponding sample covariance
is a complex-valued N ×N matrix R̂y . The features we consider in
this work are the angle, real and imaginary parts of R̂y . We construct
three N × N real-valued matrices {Xc}3c=1 whose (i, j)th entry
contain, respectively, the phase, real and imaginary parts of the signal
covariance matrix R̂y: [X1]i,j = ∠[R̂y]i,j ; [X2]i,j = Re

{
[R̂y]i,j

}
;

and [X3]i,j = Im
{

[R̂y]i,j
}

.



Algorithm 1 Training data generation for sparse array selection.
Input: Number of targets K, number of antennas N , sparse array
size D, number of data realizations L, number of DOA angles
P , number of snapshots T and SNRTRAIN.
Output: Training data: Input-output pairs consisting of sample
covariances R̂

(i,p)

y and output labels z(i)
p for p = 1, . . . , P and

i = 1, . . . , T .
1: Select K target DOAs {Θ(p)

k }
K
k=1 for p = 1, . . . , P .

2: Generate T different realizations of the array output {Y(i)
p }Ti=1

for p = 1, . . . , P as Y(i)
p = [y(i)

p (1), . . . , y(i)
p (L)], where

y(i)
p (n) =

∑K
k=1 a(Θ

(p)
k )x

(i)
k (l) + w(i)(l), x(i)(l) ∼ CN (0, σ2

s)

and w(i)(l) ∼ CN (0, σ2
nI).

3: Construct the input data R̂
(i,p)

y = Y(i)
p Y(i)H

p /L.
4: Compute the CRB values η(Θ,Sq) and obtain the class set L

representing the best subarrays.
5: Generate the input-output pairs as (R̂

(i,p)

y , z
(i)
p ) for p = 1, . . . , P

and i = 1, . . . , T .
6: Construct training data by concatenating the input-output pairs:

Dtrain = {(R̂(1,1)
y , z

(1)
1 ), (R̂(2,1)

y , z
(2)
1 ), . . . , (R̂(T,1)

y , z
(T )
1 ),

(R̂(1,2)
y , z

(1)
2 ) . . . , (R̂(T,P )

y , z
(T )
P )},

where the size of the training dataset is J = TP .

We design a deep neural network composed of convolutional layers
similar to that in [7]. The CNN consists of 9 layers. In the first layer,
the CNN accepts the two-dimensional inputs {Xc}3c=1 in three real-
valued channels. The second, fourth and sixth layers are convolutional
layers with 64 filters of size 2×2. The third and fifth layers are max-
pooling to reduce the dimension by 2. The seventh and eighth layers
are fully connected with 512 units whose 50% are randomly dropped
out to reduce overfitting in training. There are rectified linear units
(ReLU) after each convolutional and fully connected layers where
ReLU(x) = max(x, 0). At the output layer, there are Q̄ units wherein
the network classifies the given input data using a softmax function
and reports the probability distribution of the classes to provide the
best subarray.

To train the network, we collect data for P target instances and
for L realizations. Then, Q̄, the number of subarrays providing the
best DOA estimation performance is obtained. Note that Q̄� Q due
to the structure of the array as reported in [7, Table 1]. Hence we
obtain very few best subarray candidates even for large-scale antenna
arrays where the complexity of (7) increases for large values of N
and D. We realized the proposed network in MATLAB on a PC
with 768-core GPU. During the training process, 90% and 10% of
all data generated are selected as the training and validation datasets,
respectively. We used the stochastic gradient descent algorithm with
momentum for updating the network parameters with learning rate
0.05 and mini-batch size of 500 samples for 50 epochs.

B. DOA Estimation

Once the sparse array selection is performed, the chosen D
antennas are utilized upon reception to yield the D×1 measurement
signal ȳ = Āx + w̄ where Ā ∈ CD×M is a sub-matrix of A in (4)
whose rows are chosen according to the selected antennas. Following
the same steps as in Section II, we compute the sample covariance
matrix R̄y and by vectorizing it we get

r̄ = B̄p + pwvec(ID) (8)

where B̄ = Ā� Ā and ID is a D ×D identity matrix.
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Fig. 1. Performance comparison of different antenna selection techniques
with a URA geometry: (a) DOA estimation by applying MUSIC and (b)
DOA estimation by applying FISTA; CNN-based antenna selection method
gives 6 dB less error compared with random antenna selection. For a given
antenna selection method, estimation accuracy of MUSIC is 5 dB better than
that of FISTA.
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Fig. 2. Performance comparison of different antenna selection techniques
with a UCA geometry with MUSIC technique based DOA estimation; CNN-
based antenna selection method gives 6 dB less error compared with random
antenna selection.

Next, we perform DOA estimation by using both MUSIC [22] and
FISTA [21]. Assuming the number of sources K is known, the target
DOAs can be found from the following MUSIC spectra

P (Θ) =
1

āH(Θ)GGH ā(Θ)
, (9)

where ā(Θ) ∈ CD is the steering vector and G ∈ CD×D−K is the



noise subspace eigenvector matrix of R̄y . Then the DOA estimates
can be obtained from K highest peaks of P (Θ). From (8), DOAs
can also be estimated as a solution to the LASSO problem:

min
p≥0

||r̄− B̄p||22 + λ||p||1, (10)

where λ ≥ 0 is chosen empirically. To solve (10) we use FISTA
which iteratively updates the solution p̂. Once we recover the power
signal, we estimate the DOAs by relying on the property that the
signal and its power share the same support.

IV. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of our proposed DL
approach for both sparse array selection and DOA estimation. We
train the proposed CNN structure for K = 2 targets whose DOAs
are uniform randomly selected in the interval [0◦, 360◦]. We select
P = 5000 different target distributions and L = 100 data realizations
with T = 100 data snapshots. The input data is prepared as described
in Algorithm 1 and input-output data pairs are obtained. In order to
test the trained network, a dataset, different from the training data, is
generated with randomly selected target locations. When generating
the target DOAs, we assume that the target DOAs are on the grid
used for the DOA estimation algorithms as given in (3).

We consider both uniform rectangular array (URA) and uniform
circular array (UCA) in our simulations with N = 16 antennas and
half-wavelength array spacing. We select T = 100 data snapshots and
the training SNR is selected as SNRTRAIN = 20 dB. The performance
of our CNN approach is compared with random array selection
(RAS), full array and the best subarray, which is the subarray that
provides the lowest MSE by the CRB computation in (7).

We assess the performance of the sparse array selection algorithms
with both the MUSIC algorithm and the FISTA method. In Fig. 1, we
present DOA estimation results for different algorithms for D = 6
where the reduced number of classes is calculated as Q̄ = 29 whereas
Q = 8008. The MUSIC performance is shown in Fig. 1a and the
FISTA performance is given in Fig. 1b. As seen, the proposed CNN
approach effectively selects the best subarray for a large range of
SNRs and it provides effective performance compared to RAS. For
a given antenna selection method, comparing the DOA estimation
performance of MUSIC and FISTA, it is observed that the MUSIC
algorithm performs better than FISTA. The RMSE of FISTA does not
reduce for high SNR while MUSIC provides much better precision.
Specifically, the RMSE by MUSIC is 5 dB lower than that by FISTA.

We also provide the results for UCA geometry in Fig. 2 where the
MUSIC algorithm is used for DOA estimation. We select D = 8 and
Q̄ = 32 is obtained for this scenario. We obtain similar performance
for UCA as in the URA results in Fig. 1. The CNN-based method
has 6 dB lower RMSE compared with random antenna selection for
different SNRs.

V. CONCLUSION

We proposed a deep-learning approach for sparse array selection
for multiple targets. To that end, we cast the selection problem as a
classification task and train a CNN to address it. We use the sample
covariance matrix of the received signal, thus, allowing to perform
cognitive selection of the sparse array. According to the network’s
output, we choose a sparse array which is used upon reception. Given
the partial measurements received by the sparse array, we recover
the DOAs by applying either MUSIC or FISTA. The specific choice
of the solver related to whether the number of targets is known
or unknown. The proposed approach can address multiple targets

scenario and select the best array which leads to a low RMSE,
outperforming random antenna selection.
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