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Abstract—This paper determines the solvability complexity index (SCI)
and a corresponding tower of algorithms for the computational problem
of calculating the Hilbert transform of a continuous function with finite
energy from its samples. It is shown that the SCI of these algorithms is
equal to 2 and that the SCI is independent on whether the calculation is
done by linear or by general (i.e. linear and/or non-linear) algorithms.

Index Terms—Computational complexity for continuous problems,
Hilbert transform, sampling, towers of algorithms

I. INTRODUCTION

Many problems in science and engineering are such that they
can generally not be computed exactly in finitely many steps, i.e.
in finite time. Well known examples include the determination of
eigenvalues of matrices, the determination of roots of polynomials,
the calculation of solutions of certain differential equations, or the
recovery of bandlimited signals from their samples. If the solution f
of such a computational problem can not be obtained in finite time,
one asks for an algorithm which determines a sequence {fn}n∈N of
approximations of f , wherein each fn can be computed in finite time
and such that for every arbitrary ε, one can determine an N0 ∈ N
such that ‖f − fn‖ < ε for all n ≥ N0 with a norm ‖·‖ determined
by the concrete problem to be solved. Then the solution f can be
computed up to any arbitrarily small error ε in finite time and f
would be called computable or approximable in the above sense.
The classical theory of computations and complexity provides a rich
mathematical framework to classify and investigate the complexity
of such approximation processes.

However, it is known that there are several computational problems
which can not be solved by determining the limit of only one
sequence of approximations but one may need several limits to
compute the solution. Example can be found in the theory of com-
putable functions [1], [2] and Turing jumps which is part of classical
recursion theory [3] and which is known in mathematical logic
as arithmetical (or Kleene–Mostowski) hierarchy [4], [5]. Another
well known example are the McMullen–Doyle towers [6], [7] for
the polynomial root finding problem. So these examples show that
there are problems which might be solvable by determining the
limit of an approximation sequences fn1,...,nk which depend on
several indices n1, . . . , nk, and by passing n1, . . . , nk to infinity (in
an appropriated order). A general approach to analyze such multi-
parameter approximation problems was proposed recently in the very
interesting papers [8], [9]. This framework formalizes the known
approaches, mentioned above, to full generality. Therein, the so called
Solvability Complexity Index (SCI) of a computational problem with
respect to a particular class of algorithms, is the smallest number
of limits needed to compute the solution of the problem. This
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way, a powerful classification of the complexity of algorithms for
computational problems was obtained.

This paper uses the SCI framework to determine the solvability
complexity index of sampling based algorithms for the determination
of the Hilbert transform, an operation which plays a fundamental role
in many different areas of science and engineering because of its close
relation to causal physical processes [10], [11]. In a series of papers
[12], [13], [14], it was shown that on a large class of continuous
functions of finite energy, there exists no sampling based algorithm
which can determine the Hilbert transform for all functions in this
class. We are going to show that this result is equivalent to saying that
the SCI of sampling based Hilbert transform approximations is larger
than 1, and we will show that the SCI of these algorithms is exactly
equal to 2. Moreover, it is shown that this value of the SCI does even
not depend on the class of algorithms which is considered. For linear
as well as for general (i.e. not necessarily linear) algorithms, the SCI
is always equal to 2.

The paper is organized as follows. At the beginning, Section II
defines the family of signal spaces on which the sampling based
Hilbert transform approximations are investigated. After recalling
a basic result concerning the convergence of Hilbert transform
approximations in Sect. III, Section IV formulates the problem
of calculating the Hilbert transform in the SCI framework. Then
Section V determines the SCI of such algorithms and derives a
corresponding tower of algorithms. The paper closes with a short
discussion in Section VI.

II. NOTATIONS AND SIGNAL SPACES

This section clarifies the main notations and it introduces the
Banach spaces on which the Hilbert transform is investigated.

A. Basic definitions and notations

Throughout this paper, we consider continuous functions f on the
interval T = [0, 2π] with f(0) = f(2π). The set of all these functions
is denoted by C and equipped with the norm ‖f‖C = maxt∈T |f(t)|.
For every f ∈ C, its Fourier coefficients ck(f) are well defined by

ck(f) = 1
2π

∫
T f(t) e−ikt dt , k = 0,±1,±2, . . . . (1)

Let f ∈ C be arbitrary with Fourier coefficients (1). Then for every
n ∈ N, the partial Fourier series of f is defined by

(Pnf) (t) =
∑n
k=−n ck(f) eikt , t ∈ T .

Moreover, with f we associate its conjugate function, defined by

f̃(t) = (Hf) (t) = −i
∑
k∈Z sgn(k) ck(f) eikt , t ∈ T (2)

provided this sum converges is some sense and with the sign function
sgn(n) = n/|n| for n 6= 0 and sgn(0) = 0. The mapping H : f 7→ f̃
is also known as the Hilbert transform. Form this definition, it is clear
that ck(f̃) = −i sgn(k)ck(f) and in particular PnHf = HPnf .



B. Signal spaces of finite energy

Let f ∈ C be arbitrary. Based on its Fourier coefficients, we define
for any β ≥ 0 the seminorm

‖f‖β =
(∑

k∈Z, k 6=0 |k| (1 + log |k|)β |ck(f)|2
)1/2

(3)

and therewith the linear space

Bβ =
{
f ∈ C : f̃ ∈ C and ‖f‖β <∞

}
. (4)

Equipped with the norm

‖f‖Bβ = max
(∥∥f∥∥C ,∥∥f̃∥∥C , ∥∥f∥∥β) ,

the space Bβ becomes a Banach space, the primary signal space in
the following investigations. It is useful to note that the definition of
the seminorm (3) implies ‖f‖Bβ = ‖f̃‖Bβ for all f ∈ Bβ .

For β = 0, the seminorm (3) characterizes the Dirichlet energy of
the function f and the set {f ∈ C : ‖f‖β=0 <∞} corresponds to the
well known Sobolev space H1/2(T) = W 1/2,2(T). Moreover, in the
scale of the Banach space {Bβ}β≥0, the parameter β characterizes
the concentration of the (Dirichlet) energy in the Fourier coefficients.
As larger β as faster decay the amplitude of the Fourier coefficients
ck(f) as k →∞. In particular, we have the relation Bβ′ ⊂ Bβ ⊂ B0

for all β′ ≥ β ≥ 0 and we refer to [14], [15] for a more detailed
discussion on the importance and the properties of the spaces Bβ and
there relation to certain physical problems.

It is well known that for arbitrary continuous functions f ∈ C the
partial Fourier series Pnf does generally not converge to f in the
norm of C. Nevertheless, it is not hard to see that for all f ∈ Bβ the
situation is much better.

Lemma 1: For every β ≥ 0 and every f ∈ Bβ holds

lim
n→∞

∥∥f − Pnf
∥∥
C = 0 and lim

n→∞

∥∥f̃ − Pnf̃
∥∥
C = 0 .

We refer to [14, Lemma 1] for a proof of this simple statement.

III. THE NON-COMPUTABILITY OF THE HILBERT TRANSFORM

The Hilbert transform (2), also known as Kramers–Kronig relation,
plays a central role in physic and engineering because of its close
relation to the concept causality [10], [11]. Especially in engineering,
there are many applications where it is important to calculate the
Hilbert transform of a given (or measured) function f . Nowadays,
such calculations are (almost) always done on digital computers.
Therefore, the question arises whether there exists an algorithm which
is able to approximate Hf arbitrarily well from finitely many samples
of f for all functions from a certain signal space.

The described problem is just one particular example of sampling
based signal processing methods which are the basis of modern signal
processing, especially in a period of an increasing digitization in
science and technology. The problem of finding sampling based algo-
rithms for the computation of the Hilbert transform was investigated
by the authors in a series of papers [12], [13], [14], [16] and the
following general statement could finally be proved.

Theorem 2 (Corollary 3.2 in [16]): Let {Γn}n∈N be a sequence of
lower semicontinuous mappings Γn : Bβ → C so that to every n ∈ N
there exists a finite subset Tn ⊂ T such that f1(τ) = f2(τ) for all
τ ∈ Tn implies Γn(f1) = Γn(f2). Then for every 0 ≤ β ≤ 1 there
exist functions f ∈ Bβ such that lim supn→∞ ‖Hf − Γn(f)‖C > 0.

Remark 1: It was also shown that for every β > 1 there is a sequence
{Γn}n∈N of linear mappings Γn : Bβ → C with the properties from
Theorem 2 and such that limn→∞ ‖Hf − Γnf‖C = 0 for all f ∈ Bβ .

Theorem 2 is the motivation for our following investigations. As
we will see in Theorem 3 below, Theorem 2 implies that the SCI
of sampling based Hilbert transform approximations on Bβ has to
be larger than 1. So it is an interesting problem to determine the
SCI of this particular computational problem. Since the previous
remark implies that on the spaces Bβ with β > 0, the SCI of the
Hilbert transform is at most 1, we consider subsequently only Hilbert
transform approximations on spaces Bβ with β ∈ [0, 1].

IV. TOWERS OF ALGORITHMS AND THE SCI

We follow the general framework for computational problems
introduced in [8], [9]. The basic objects in this framework are

Ω : the primary set, i.e. a set of objects
Λ : the evaluation set, i.e. a set of functionals on Ω
M : a metric space
Ξ : the problem function, i.e. a mapping Ξ : Ω→M

Because of space constraints, we do not explain the framework in its
full generality but we apply this framework directly to our concrete
problem. In our case, the above defined objects are given as follows.
• Ω = Bβ for some β ∈ [0, 1].
• Λ is the set of functionals St : Bβ → C with t ∈ T defined by

St(f) = f(t) , f ∈ Bβ .

• M will be either C(T) or Bβ , i.e. even a normed space.
• Ξ = H : Bβ →M is the Hilbert transform (2).

Remark 2: Both choices M = C and M = Bβ are of interest in
practical applications [14].
Definition 1 (Computational Problem): We call the collection
{H,Bβ ,M,Λ} the computational problem (of sampling based
Hilbert transform approximations).
In other words, the particular computational problem studied in this
paper is as follows. We consider functions in the primary set (i.e.
the signal space) Bβ of continuous functions with finite energy. The
evaluation set Λ models our signal acquisition. Here, the possible
acquisition functionals are point evaluations of the signals f ∈ Bβ at
points t ∈ T. Then the goal is to determine an approximation of the
problem function (i.e. the Hilbert transform H) for all functions from
the primary set but based on a finite subset of the samples {S(f)}S∈Λ.
The quality of the approximation is measured in the metric of M
(i.e. in the norm of C or Bβ).

The problem of calculating Hf from samples of f ∈ Bβ will
be solved by a tower of algorithms. The following definition char-
acterizes the fundamental algorithms which will build the lowest
(fundamental) level of the tower of algorithms.
Definition 2 (Fundamental Algorithm): Let β ∈ [0, 1] be arbitrary
and let {H,Bβ ,M,Λ} be a computational problem of sampling
based Hilbert transform approximations. A fundamental algorithm
is a mapping Γ : Bβ →M such that

1) there exists a finite subset ΛΓ ⊂ Λ,
2) for every f ∈ Bβ the action of Γ on f depends only on the

values {S(f)}S∈ΛΓ
,

3) if some f, g ∈ Bβ satisfy S(g) = S(f) for all S ∈ ΛΓ then
Γ(f) = Γ(g),

4) if {fn}n∈N ⊂ Bβ is a sequence with limn→∞ ‖f − fn‖Bβ = 0

then limn→∞ ‖Γ(f)− Γ(fn)‖M = 0.
We say that Γ is a fundamental algorithm of type L, if Γ is linear.
Γ is said to be of type G, if there is no restriction on linearity of Γ.
Remark 3: Note the close relation between Properties 1)–3) in this
definition and the requirements on the sequence {Γn}n∈N in The-
orem 2. Note also that Property 4) in Definition 2 is not contained



in the general framework from [9] but it is needed here to apply
later Theorem 2. It requires that the fundamental algorithms are
(sequential) continuous mappings Bβ →M.

According to Definition 2, we broadly distinguish between fun-
damental algorithms of type linear (L) and of type general (G).
Type G means that we make no restriction on the algorithms.
They can be either linear or non-linear. Note also that if Γ is of
type L then it will have a fairly simple structure. Indeed, assume
{tk}nk=1 ⊂ T is the finite sampling set which defines the evaluation
set ΛΓ = {Sk}nk=1 ⊂ Λ by Sk(f) = f(tk). Then the linearity of Γ
implies that it has the form

(Γf) (t) =
∑n
k=1 Sk (f) γk(t) =

∑n
k=1 f(tk) γk(t)

for all t ∈ T and with functions {γk}nk=1 ⊂ M which completely
determine Γ. Moreover, this representation of Γ implies immediately
that it is also bounded.

The calculation of Hf is not entirely performed by fundamental
algorithms but by a tower of algorithms. These are families of
sequences of algorithms where the operators in a certain level are
obtain as a limit of algorithms from a lower level. In the top level of
the algorithm, Hf is finally calculated.

Definition 3 (Tower of Algorithms): Given the computational prob-
lem {H,Bβ ,M,Λ} for some β ∈ [0, 1]. A tower of algorithms of
type α of height k for {H,Bβ ,M,Λ} is a family of sequences of
operators

Γnk : Bβ →M ,

Γnk,nk−1 : Bβ →M ,
...

Γnk,nk−1,...,n1 : Bβ →M ,

where nk, . . . , n1 ∈ N and where the operators Γnk,nk−1,...,n1 at
the lowest level of the tower are fundamental algorithms of type α
in the sense of Def. 2. Moreover, for every f ∈ Bβ holds

H(f) = limnk→∞ Γnk (f)

Γnk (f) = limnk−1→∞ Γnk,nk−1(f)
...

Γnk,...,n2(f) = limn1→∞ Γnk,...,n2,n1(f)

where the convergence is always in the metric of M.

Remark 4: Note that in a tower of algorithms of type L, all operators,
in each level of the tower, are linear and bounded. Since the operators
in the lowest level are linear and bounded, it is easily seen that the
operators in the higher levels are also linear and bounded. A tower
of type α = G contains arbitrary operators.

The height of a tower of algorithms is an important parameter
since it characterizes in some sense the complexity of the correspond-
ing computational problem. More precisely, given a computational
problem {H,Bβ ,M,Λ}, we are interested in finding a tower of
algorithms whose height is as small as possible.

Definition 4 (Solvability Complexity Index – SCI): Given a com-
putational problem {H,Bβ ,M,Λ}. We say that {H,Bβ ,M,Λ}
has a Solvability Complexity Index SCI (H,Bβ ,M,Λ)α = k with
respect to towers of algorithms of type α if k is the smallest integer
for which there exists a tower of algorithms of type α of height k. If
no such tower exists then SCI (H,Bβ ,M,Λ)α =∞.

If the SCI of a certain computational problem is k <∞, it means that
the problem can be computed by k limiting processes. Clearly, the

larger k the more demanding is the computation. A SCI of zero would
mean that the problem can be computed in finitely many steps. In
our case, the SCI (H,Bβ ,M,Λ)α depends generally only on the two
parametersM and α, because the problem function, the primary set,
and the evaluation set are fixed in our setting. So to simplify notations,
we write sometimes SCIH (M)α instead of SCI (H,Bβ ,M,Λ)α.

V. THE SCI INDEX OF THE HILBERT TRANSFORM

This section investigate the SCI of sampling based algorithms
for calculating the Hilbert transform of functions in Bβ . So for
an arbitrary β ∈ [0, 1], we want to determine the SCI of the
computational problem defined in Def. 1. In principle, we consider
the two computational problems

{H,Bβ , C,Λ} and {H,Bβ ,Bβ ,Λ}

and we look for towers of algorithms of type α = L (linear) and of
type G (general). First we notice that because the set of all linear
operators is a subset of all general operators, one has the relation

SCI (H,Bβ ,M,Λ)G ≤ SCI (H,Bβ ,M,Λ)L (5)

for M = C or M = Bβ . Moreover, since Bβ is continuously
embedded in C with ‖f‖C ≤ ‖f‖Bβ for all f ∈ Bβ , we have for
both types α = L and α = G also

SCI (H,Bβ , C,Λ)α ≤ SCI (H,Bβ ,Bβ ,Λ)α (6)

because if a tower of algorithm converges in Bβ , it converges a
fortiori in C.

Our main contribution is the following complete characterization
of the SCI for the computational problem of sampling based Hilbert
transform approximations.
Theorem 3: Let β ∈ [0, 1] be arbitrary, then we have

SCI (H,Bβ ,Bβ ,Λ)L = SCI (H,Bβ , C,Λ)G = 2 .

Remark 5: Theorem 3 implies in particular that for both Banach
spacesM = C andM = Bβ and for both types of fundamental algo-
rithms α = L and α = G the computational problem {H,Bβ ,M,Λ}
has the same solvability complexity index SCI = 2. This follows
immediately from (5) and (6) because

2 = SCIH (Bβ)L ≥ SCIH (C)L ≥ SCIH (C)G = 2

and 2 = SCIH (Bβ)L ≥ SCIH (Bβ)G ≥ SCIH (C)G = 2 .

So not only SCIH (Bβ)L = SCIH (C)G = 2, as claimed by the
theorem, but also SCIH (C)L = SCIH (Bβ)G = 2.

Proof: We show first that SCI (H,Bβ , C,Λ)G ≥ 2. To this
end, we note that SCI (H,Bβ , C,Λ)G ≥ 1. Otherwise, it would be
possible to write every f ∈ Bβ as a finite sampling series. Since Bβ
is an infinite-dimensional space, this is impossible. Assume now that
SCI (H,Bβ , C,Λ)G = 1. Then there exists a sequence {Γn1}n1∈N
of functions satisfying the conditions for the fundamental algorithms
given in Def. 2 and such that

lim
n1→∞

‖Hf − Γn1(f)‖C = 0 for all f ∈ Bβ .

Nevertheless, this would contradict Theorem 2 and so the SCI of our
problem has to be larger than one, i.e.

SCI (H,Bβ , C,Λ)G ≥ 2 . (7)

Next, by constructing a tower of algorithms of height 2 and of
type L, we are going to show that

SCI (H,Bβ ,Bβ ,Λ)L ≤ 2 . (8)



To this end, let n1, n2 ∈ N be fixed. For f ∈ Bβ , we consider

ck(f, n1) = 1
n1

∑n1−1
l=0 f

(
l 2π
n1

)
e
−i 2π
n1
lk
, for all |k| ≤ n2 ,

and notice that ck(f, n1) is the approximation of the kth Fourier
coefficient (1) of f by a Riemann sum based on n1 equally spaced
sampling points. Therefore, and since f is continuous, we have

lim
n1→∞

ck(f, n1) = ck(f) for all |k| ≤ n2 . (9)

Now we define the operators on the lowest level of our tower by

(Γn2,n1f) (t) = −i
∑n2
k=−n2

sgn(k) ck(f, n1) eikt , t ∈ T ,

and the operators on the upper level by

(Γn2f) (t) = −i
∑n2
k=−n2

sgn(k) ck(f) eikt , t ∈ T . (10)

Clearly, all of these operators are of type L and it remains to verify
that these operators satisfy the conditions of Def. 3. Indeed, since

(Γn2f) (t)− (Γn2,n1f) (t)

= −i
∑n2
k=−n2

sgn(k) [ck(f)− ck(f, n1)] eikt

the triangle inequality and (9) easily yield

lim
n1→∞

‖Γn2f − Γn2,n1f‖Bβ = 0 for all f ∈ Bβ ,

and for every finite n2 ∈ N.
It remains to verify that the upper level Γn2f of the tower

converges to Hf in the norm of Bβ . So by the definition of the
norm in Bβ , we have to investigate the three terms∥∥f̃ − Γn2f

∥∥
C ,

∥∥H
[
f̃ − Γn2f

]∥∥
C ,

∥∥f̃ − Γn2f
∥∥
β
. (11)

To this end, we notice that (10) is just the partial Fourier series of
the conjugate function f̃ , i.e.(

Γn2f
)
(t) =

∑n2
k=−n2

ck
(
f̃
)

eikt =
(
Pn2 f̃

)
(t) .

Since f ∈ Bβ , Lemma 1 implies immediately that the first term in
(11) converges to zero as n2 →∞, i.e.

lim
n2→∞

∥∥Hf − Γn2f
∥∥
C = lim

n2→∞

∥∥f̃ − Pn2 f̃
∥∥
C = 0 . (12)

For the second term in (11), we note first that

H
(
f̃ − Γn2f

)
= H

(
f̃ − Pn2 f̃

)
= H

(
Hf − Pn2Hf

)
= H

(
Hf −HPn2f

)
= HH

(
f − Pn2f

)
= −

(
f − Pn2f

)
.

Then Lemma 1 shows that the right hand side converges uniformly
to zero as n2 →∞, i.e.

lim
n2→∞

∥∥H
(
f̃ − Γn2f

)∥∥
C = lim

n2→∞

∥∥f − Pn2f
∥∥
C = 0 . (13)

Finally, for the last term in (11), we have∥∥f̃ − Γn2f
∥∥
β

=
∥∥f̃ − Pn2 f̃

∥∥
β

=
(∑

|k|>n2
|k| (1 + log |k|)β |ck(f)|2

)1/2

showing that limn2→∞
∥∥f̃ − Γn2f

∥∥
β

= 0. Combining this observa-
tion with (12) and (13), one obtains the desired result, namely

lim
n2→∞

∥∥f̃ − Γn2f
∥∥
Bβ

= lim
n2→∞

∥∥Hf − Γn2f
∥∥
Bβ

= 0 .

So we verified that the pair of sequences {Γn2,n1} and {Γn2} is a
tower of algorithms of height 2 and type L, i.e. we verified (8).

Combining (7), (8) with observations (5), we get finally

2 ≤ SCIH (C)G ≤ SCIH (Bβ)G ≤ SCIH (Bβ)L ≤ 2 ,

which proves the statement of the theorem.
Notice that the tower of algorithms for sampling based Hilbert

transform approximations, as given in the previous proof, is very
simple. The first layer of the tower determines basically the Fourier
coefficients ck(f) by an approximation of the Fourier integral by
a Riemann sum (first limit). Then the second layer determines the
Hilbert transform via the conjugate Fourier series (second limit)
based on the Fourier coefficients of f . It is an interesting result that
for approximations with 2 limits such a simple algorithm already
works. For algorithms with only 1 limit, on the other hand, even
arbitrary (non-linear) sampling operators yield no convergent method
(cf. Theorem 2).

VI. DISCUSSION AND CONCLUSIONS

Previous works already showed that there is no sampling based
algorithm which is able to determine the Hilbert transform for all
functions in Bβ with β ∈ [0, 1] as the limit of a one-parameter ap-
proximation process. Applying the new framework of the solvability
complexity index (SCI) and towers of algorithms, this paper showed
that there exist sampling based towers of algorithms of height 2 for
the calculation of the Hilbert transform. So the SCI for sampling
based Hilbert transform approximations is priestly 2, i.e. the Hilbert
transform can be determined by an approximation procedure which
involves two limits. It is an interesting and surprising observation
that the SCI is the same for towers of algorithms of type G as well
as for type L towers. So in the scale of the SCI, general algorithms
have no advantage compared to linear algorithms.
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