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Abstract—Random linear mappings play a large role in
modern signal processing and machine learning. For example,
multiplication by a Gaussian matrix can preserve the geometry
of a set while reducing the dimension.

Non-gaussian random mappings are attractive in practice for
several reasons, including improved computational cost. On the
other hand, mappings of interest often have heavier tails than
Gaussian, which can lead to worse performance, i.e., less accurate
preservation of the geometry of the set. In the sub-gaussian case,
the size of the tail is measured with the sub-gaussian parameter,
but the dependency has not been fully understood yet.

We present the optimal tail dependency on the sub-gaussian
parameter and prove it through a new version of Bernstein’s in-
equality. We also illustrate popular applications whose theoretical
guarantees can be improved by our results.

I. INTRODUCTION

Random linear mappings play a central role in dimension
reduction, compressed sensing, and numerical linear algebra
(NLA) due to their propensity to preserve the geometry of a
given set. The performance of a random linear mapping A ∈
Rm×n is often determined by the uniform deviation bound
of 1√

m
‖Ax‖2 from ‖x‖2 for all vectors in the set (in other

words, how good the map 1√
m
A is as an isometry on the set).

This is now well-understood by the standard techniques in the
Gaussian random matrix case [1], [2].

However, in many applications, non-gaussian random map-
pings are more useful because of their computational/storage
benefits or simply the difficulty to generate Gaussian matrices
from sampling devices [3]. For example, sparse or structured
random matrices are preferred in both dimension reduction
[4] and random sketching in NLA [5]–[8] since they provide
more efficient matrix multiplications than dense and unstruc-
tured matrices such as Gaussian ones. Certain formulations
in compressed sensing also naturally require random matrices
such as randomly subsampled Fourier measurements [9] or
Bernoulli random matrices [10].

There has been a series of recent works [4], [11], [12] to
demonstrate the effectiveness of random mappings outside the
Gaussian setup. Unlike the Gaussian case in which we have
a rotation invariance property, these papers use more sophis-
ticated arguments since there are new technical challenges.

In this line of research, Liaw et al. [11] showed the
following uniform deviation bound. Let T ⊂ Rn, then with
high probability we have

sup
x∈T

∣∣∣∣ 1√
m
‖Ax‖2 − ‖x‖2

∣∣∣∣ ≤ K2 ·O(w(T ) + rad(T ))√
m

(1)

where K is the sub-gaussian parameter of A as in Definition
I.2; rad(T ) := supy∈T ‖y‖2, which is the radius when T is
symmetric; w(T ) is the Gaussian width, defined by

w(T ) := Esup
y∈T
〈g, y〉 where g ∼ Normal(0, In).

The sub-gaussian parameter roughly measures how fast the tail
of a distribution decays; usually the bigger K is, the heavier
the tail. Gaussian width measures the complexity of a set, in
particular, w2(cone(T )∩Sn−1) is a meaningful approximation
for dimension [12], [13].

When it comes to the dependency on the sub-gaussian
parameter K in (1), other important works regarding this type
of bound are either not explicit [12], [14] or at least of the
same order K2 [4], [15], [16].

In this article we refine these bounds by improving the
dependency on the sub-gaussian parameter from K2 to
K
√
logK. This enhances the deviation bound substantially

when the sub-gaussian mapping is not well-behaved, for exam-
ple, when K increases together with the signal dimension. We
also prove that this dependency on K is optimal. Our bound
is broadly applicable since it requires only the isotropic and
sub-gaussian properties of the random matrices without any
other assumptions.

The proof follows from an analogous approach in Liaw et al.
[11]. The novel part we develop is a new Bernstein’s inequality
under bounded first absolute moment condition. We believe
that this new Bernstein’s inequality may be interesting on its
own as an application-oriented deviation inequality.

A. Definitions

Sub-gaussian random variables have tails bounded by Gaus-
sian random variables. Similarly, sub-exponential random vari-
ables have tails bounded by exponential random variables.
There are several equivalent ways to define the sub-gaussian
and sub-exponential norm [2]. We will use the following
definition, which is the easiest to work with for our purpose.

Definition I.1. For a random variable Z, define its sub-
gaussian norm as

‖Z‖ψ2
:= inf{t > 0 : E exp

(
Z2/t2

)
≤ 2},

and sub-exponential norm as

‖Z‖ψ1 := inf{t > 0 : E exp(|Z|/t) ≤ 2}.



Furthermore, Z is called sub-gaussian (or sub-exponential) if
‖Z‖ψ2 <∞ (or ‖Z‖ψ1 <∞).

It is easy to see from the definition that X is sub-gaussian
if and only if X2 is sub-exponential, and ‖X2‖ψ1

= ‖X‖2ψ2
.

The sub-gaussian norm for Normal(0, σ2) is
√
8/3σ; for

Bernoulli(1, p) it is log−1/2
(
1 + p−1

)
; for Rademacher ran-

dom variable it is log−1/2(2) and for any bounded (by M )
random variable it is no more than M log−1/2(2).

We will be focusing on isotropic, sub-gaussian random
matrices. The isotropic condition guarantees that these ma-
trices (after normalization 1√

m
) preserve Euclidean norm in

expectation.

Definition I.2. For a random vector a ∈ Rn,
• a is sub-gaussian if

‖a‖ψ2 := sup
x∈Sn−1

‖〈a, x〉‖ψ2 <∞,

• a is isotropic if
EaaT = In.

A random matrix A ∈ Rm×n is isotropic and sub-gaussian
if its rows are independent, isotropic and sub-gaussian. The
sub-gaussian parameter of A is defined to be

K := max{‖Ai‖ψ2
: Ai are the rows of A, 1 ≤ i ≤ m}.

Some examples of isotropic and sub-gaussian matrices are
matrices whose entries are independent and sub-gaussian with
second moment 1, uniformly subsampled (with replacement)
rows of orthonormal basis or tight frames, etc. [2]. In the cases
of Bernoulli matrices or sparse ternary matrices, which is a
generalization of the database-friendly mappings in [5], the
sub-gaussian parameter could depend on the signal dimension
n if the probability of an entry being nonzero is n-dependent.

B. Notations

We will use ‖ · ‖2 for Euclidean norm, use ◦ for Hadamard
(entrywise) product, say f . g if f ≤ Cg for some absolute
constant C, and similar for f & g. We will also use c and C
to denote absolute constants (usually c for small ones and C
for large ones), and these absolute constants may vary from
line to line.

II. MAIN RESULTS

A. Random Matrices on Sets

We state our main theorem below. This result improves
the dependence on K over Theorem 1.1 in [11]. Recall that
rad(T ) = supy∈T ‖y‖2 and w(T ) is the Gaussian width of T .

Theorem II.1. Let A ∈ Rm×n be an isotropic and sub-
gaussian matrix with sub-gaussian parameter K, and let
T ⊂ Rn be a bounded set, then

E sup
x∈T

∣∣‖Ax‖2 −√m‖x‖2∣∣ ≤ CK√logK [w(T ) + rad(T )] ,

and the event

sup
x∈T

∣∣‖Ax‖2 −√m‖x‖2∣∣ ≤ CK√logK [w(T ) + u · rad(T )]

holds with probability at least 1− exp
(
−u2

)
.

Generally rad(T ) is dominated by w(T ). For example, if
0 ∈ T , then w(T ) ≥ rad(T )/

√
2π. In that case, with high

probability, 1√
m
A is a near isometry on T whenever m &

K2 logKw2(T ).
To prove Theorem II.1, we first need to look at the case

when T consists of only a single point. Let x ∈ Sn−1 be a
fixed vector on the unit sphere and define X := Ax ∈ Rm as
the random vector that A maps x to. Then the coordinates Xi

of this random vector are independent with

EX2
i = 1 (isotropic), ‖Xi‖ψ2

≤ K (sub-gaussian). (2)

Furthermore Lemma 5.3 in [11] states that

‖‖X‖2 −
√
m‖ψ2

. K2.

In other words, ‖Ax‖2 has a sub-gaussian concentration
around

√
m. It is worth noting that this concentration is

independent of the ambient dimension m.
In [11], it is listed as an open problem whether this K2

dependence can be improved. Here we give a complete answer
to this question. The following Theorem II.2 improves this
dependence from K2 to K

√
logK. Then in Proposition II.3,

we construct an example that shows this K
√
logK is also

tight. We state our improved dependence on K in a more
general form by also allowing arbitrary weights bi on Xi.

Theorem II.2. Let X = (X1, . . . , Xm) be a random vector in
Rm with independent sub-gaussian entries satisfying EX2

i = 1
and ‖Xi‖ψ2

≤ K. Then for any fixed b = (b1, . . . , bm) ∈ Rm,
we have

‖‖b ◦X‖2 − ‖b‖2‖ψ2 ≤ CK
√

logK‖b‖∞.

Here ◦ denotes the entrywise product.

If b is the all ones vector, this upper bound is achieved (up
to a constant) by scaled Bernoulli random variables.

Proposition II.3. Let K ≥ 3 and X = (X1, . . . , Xm) ∈
Rm be a random vector with independent entries such that

1
K2 logKX

2
i ∼ Bernoulli

(
1, 1

K2 logK

)
, then ‖Xi‖ψ2

≤ K,
and for m ≥ K2 logK,

‖‖X‖2 −
√
m‖ψ2

≥ cK
√

logK. (3)

Here the assumption m ≥ K2 logK is mild because it
essentially requires that X is non-zero in expectation.

B. A New Bernstein’s Inequality

To prove Theorem II.2, we use a new version of Bern-
stein’s inequality (Theorem II.4). Compared to the standard
Bernstein’s inequality for sub-exponential random variables
[2], we impose an extra assumption on the first absolute
moment (E|Yi| ≤ 2 in Theorem II.4). This condition comes
naturally form the isotropic condition of A because if we set
Yi := X2

i − 1, then E|Yi| ≤ EX2
i + 1 = 2.
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Theorem II.4. Let a = (a1, . . . , am) be a fixed non-zero
vector and let Y1, . . . , Ym be independent, mean zero sub-
exponential random variables satisfying E|Yi| ≤ 2 and
‖Yi‖ψ1

≤ K2
i (Ki ≥ 2). Then for every u ≥ 0, we have

P

(∣∣∣∣∣
m∑
i=1

aiYi

∣∣∣∣∣ ≥ u
)
≤

2 exp

[
−cmin

(
u2∑m

i=1 a
2
iK

2
i logKi

,
u

‖a‖∞K2 logK

)]
,

where K = maxiKi and c is an absolute constant.

The improvement of Theorem II.4 over standard Bernstein’s
inequality is the parameter in the sub-gaussian regime, from∑
a2iK

4
i to

∑
a2iK

2
i logKi.

Remark II.5. In the assumption E|Yi| ≤ 2, we can replace
the 2 by any arbitrary constant and it would only lead to a
different absolute constant c.

III. APPLICATIONS

A. Johnson-Lindenstrauss Lemma

One immediate application of our result is a guarantee for all
isotropic and sub-gaussian matrices as Johnson-Lindenstrauss
(JL) embeddings for dimension reduction. We state this JL
lemma below. It follows directly form Theorem II.2.

Lemma III.1. Let A ∈ Rm×n be an isotropic and sub-
gaussian matrix with sub-gaussian parameter K. If

m ≥ CK2 logKε−2 log(1/δ), (4)

then for any x, y ∈ Rn, with probability at least 1−δ we have

(1− ε)‖x− y‖2 ≤
1√
m
‖A(x− y)‖2 ≤ (1 + ε)‖x− y‖2.

It is known that the dependence on ε and δ in (4) is optimal
for linear mappings [17]. Based on Proposition II.3 we can
now say that the dependence on sub-gaussian parameter K is
also optimal. Similar results have appeared in [4], [18], but
to the best of our knowledge, the previous known dependence
on K was K4.

B. Random Sketches

In sketching [7], we have a hugely over-determined system
Bx = y and the goal is to solve the least square problem on
some convex set C, given by

min
x∈C

f(x) := ‖Bx− y‖22. (5)

To save computation time, we could use an isotropic, sub-
gaussian matrix A ∈ Rm×n to reduce the dimension and solve
the sketched problem instead.

min
x∈C

g(x) := ‖A(Bx− y)‖22. (6)

We say a solution x̂ to the sketched problem (6) is δ-optimal
to the original optimal solution x∗ of (5) if

f(x̂) ≤ (1 + δ)2f(x∗).

With Theorem II.1, II.4 and a similar argument as in [7,
Theorem 1, Lemma 2, Lemma 3], we can find that if

m & K2 logK
w2(BT ∩ Sn−1)

δ2
,

then with high probability, the solution to the sketched problem
is δ-optimal. Here T is the tangent cone of C at optimum x∗.
This guarantee improves the dependence on K from K4 to
K2 logK when compared to the result in [7].

IV. PROOFS

A. A New Bernstein’s Inequality

Lemma IV.1. Let Y be a sub-exponential random variable
satisfying E|Y | ≤ 2 and ‖Y ‖ψ2

≤ K2 (K ≥ 2). Then

E|Y |p ≤ Cppp
(
K2 logK

)p−1
, ∀p ≥ 1/3.

Proof. Define f(t) := P(|Y | ≥ t) et/K2

.
From E|Y | ≤ 2 we have∫ ∞

0

f(t)e−t/K
2

dt =

∫ ∞
0

P(|Y | ≥ t)dt ≤ 2. (7)

Also, from ‖Y ‖ψ1
≤ K2 and with a change of variable s =

et/K
2

we have

2 ≥ E exp
(
|Y |/K2

)
=

∫ ∞
0

P
(
e|Y |/K

2

≥ s
)
ds

=

∫ 0

−∞
K−2et/K

2

dt+

∫ ∞
0

K−2f(t)dt.

The first integral on the right hand side is 1, so∫ ∞
0

f(t) dt ≤ K2. (8)

To bound the p-th moment of |Y |, first notice that

E|Y |p =
∫ ∞
0

P(|Y |p ≥ s)ds =
∫ ∞
0

f(u)e−u/K
2

pup−1du.

Set T = 6pK2 logK and split this integral into two parts:∫ T

0

f(u)e−u/K
2

pup−1du ≤ pT p−1
∫ T

0

f(u)e−u/K
2

du

(7)
≤ 2p

(
6pK2 logK

)p−1
;

∫ ∞
T

f(u)e−u/K
2

pup−1du ≤ pT p−1e−T/K
2

∫ ∞
T

f(u)du

(8)
≤ pT p−1K−6pK2

≤ p
(
6pK2 logK

)p−1
.

Here we used the fact that up−1e−u/K
2

monotonically de-
creases on [T,∞). Combining these two parts completes the
proof with C ≤ 6.

With Lemma IV.1, the proof for Theorem II.4 essentially
relies on the same argument for Bernstein’s inequality for sub-
exponential random variables [2, Theorem 2.8.1].

3



Proof outline for Theorem II.4. First bound the moment
generating functions for Yi through Taylor series and Lemma
IV.1 to get

E exp(λYi) ≤ exp
(
Cλ2K2

i logKi

)
when |λ|K2

i logKi ≤ c.

Then for u ≥ 0, apply Markov’s inequality to get

P

(
m∑
i=1

aiYi ≥ u

)
≤ e−λuE exp

(
λ

m∑
i=1

aiYi

)

≤ exp

(
−λu+ λ2C

m∑
i=1

a2iK
2
i logKi

)
.

Finally, optimize λ over
[
0, c
‖a‖∞K2 logK

]
to obtain one side

of the bound. The bound for P (
∑
aiYi < −u) is similarly

obtained by considering −Yi instead of Yi.

B. Random Matrices on Sets

Proof of Theorem II.2. We will assume b is non-zero. Let

Y := ‖b ◦X‖22 − ‖b‖22 =

m∑
i=1

(
b2iX

2
i − b2i

)
.

By Theorem II.4 and
∑
b4i ≤ ‖b‖2∞‖b‖22 we have P (Y ≥ u)

is bounded above by

exp

[
−cmin

(
u2

‖b‖2∞‖b‖22K2 logK
,

u

‖b‖2∞K2 logK

)]
.

Define h(s) := P(|‖b ◦X‖2 − ‖b‖2| ≥ s) and consider the
following two cases:

1) 0 ≤ s ≤ ‖b‖2. Setting u = s‖b‖2 ≤ ‖b‖22, we have

h(s) = P (|Y | ≥ s (‖b ◦X‖2 + ‖b‖2))
≤ P(|Y | ≥ s‖b‖2)

≤ 2 exp

(
−c s2

‖b‖2∞K2 logK

)
.

2) s ≥ ‖b‖2. Setting u = s2 ≥ ‖b‖22, we have

h(s) = P((‖b ◦X‖2 − ‖b‖2)2 ≥ s2)
≤ P(|Y | ≥ s2)

≤ 2 exp

(
−c s2

‖b‖2∞K2 logK

)
.

Here the first inequality uses (α − β)2 ≤ |α2 − β2| for
α, β ≥ 0.

These show that h(s) is bounded by the tail of a Gaussian
whose standard deviation is in the order of ‖b‖∞K

√
logK;

the bound for ψ2 norm then follows.

To prove Theorem II.1, we will use the the following lemma.
This lemma is analogous to Theorem 1.3 in [11], but with
optimal dependence on K.

Lemma IV.2. Let A ∈ Rm×n be an isotropic and sub-
gaussian matrix with parameter K, then the random process

Zx := ‖Ax‖2 −
√
m‖x‖2

has sub-gaussian increments with

‖Zx − Zy‖ψ2
≤ CK

√
logK‖x− y‖2, ∀x, y ∈ Rn.

Proof. The proof of this essentially the same as the proof for
Theorem 1.3 in [11], except we use Theorem II.2 and Theorem
II.4 whenever possible. We would also like to point out that
the random variables 〈Ai, u〉〈Ai, v〉 (as in equation (5.5) from
[11]) have first absolute moment

E|〈Ai, u〉〈Ai, v〉| ≤
1

2
E
(
〈Ai, u〉2 + 〈Ai, v〉2

)
≤ 1 + 4

2
=

5

2

since ‖u‖2 = 1, ‖v‖2 ≤ 2 and Ai is isotropic. So our new
Bernstein’s inequality (Theorem II.4) does apply.

Proof of Theorem II.1. This follows from Lemma IV.2 and
Talagrand’s Majorizing Measure Theorem [16], [19].

The proof for Proposition II.3 is long and technical, so we
only present the proof idea here.

Proof idea for Proposition II.3. Let Z = ‖X‖2−
√
m. Then

it suffices to show E exp
(
Z2/(cK2 logK)

)
> 2. Write this

expectation as an integral and notice that

P(|Z| ≥ u) ≥ P
(
‖X‖22 ≥ (

√
m+ u)2

)
(9)

where 1
K2 logK ‖X‖

2
2 ∼ Binomial

(
m, 1

K2 logK

)
. We can then

prove the proposition by bounding (9) from below through a
lower bound for Binomial tails [20, Lemma 4.7.2].
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[18] J. Matoušek, “On variants of the johnson–lindenstrauss lemma,” Random
Structures & Algorithms, vol. 33, no. 2, pp. 142–156, 2008.

[19] M. Talagrand, Upper and lower bounds for stochastic processes: modern
methods and classical problems. Springer Science & Business Media,
2014, vol. 60.

[20] B. Robert, Ash. Information Theory. Dover Publications Inc., 1990.

5


