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Abstract—The paper presents a versatile library of analytic
and quasi-analytic complex-valued wavelet packets (WPs) which
originate from discrete splines of arbitrary orders. The real parts
of quasi-analytic WPs are the regular spline-based orthonormal
WPs designed in [1]. The imaginary parts are the so-called
complementary orthonormal WPs, which, unlike the symmetric
regular WPs, are antisymmetric. Tensor products of 1D quasi-
analytic WPs provide a diversity of 2D WPs oriented in multiple
directions. For example, the set of fourth-level WPs comprise 62
different directions. The designed computational scheme enables
extremely fast and easy implementation of the WP transforms.

I. INTRODUCTION: ANALYTIC DISCRETE-TIME PERIODIC
SIGNALS

The space of discrete-time N -periodic signals is denoted by
Π[N ], and ω def

= e2πi/N . A signal x ∈ Π[N ] is represented by
its inverse DFT as follows:

x[k] =
x̂[0] + (−1)kx̂[N/2]

N
(1)

+
2

N

N/2−1∑
n=1

x̂[n]ωkn + x̂[n]∗ ω−kn

2
,

where ·∗ means complex conjugate. Note that x̂[0] and x̂[N/2]
are real-valued.

Define the real-valued signal y ∈ Π[N ] and the complex-
valued signals z+ and z−:

y[k]
def
=

2

N

N/2−1∑
n=1

x̂[n]ωkn − x̂[n]∗ ω−kn

2i
, (2)

z±[k]
def
= x[k]± iy[k] =

x̂[0] + (−1)kx̂[N/2]

N
(3)

+
2

N

N/2−1∑
n=1

{
x̂[n]ωkn, for z+;
x̂[n]∗ ω−kn, for z−.

The signal’s z+ DFT spectrum is

ẑ+[n] =

 x̂[n], if n = 0, or n = N/2 ;
2x̂[n], if 0 < n < N/2;
0, otherwise

and similarly for z−. The signal y is a discrete periodic version
of the Hilbert transform (HT) of the signal x ∈ Π[N ]. The
spectrum of z+ comprises only non-negative frequencies and
vice versa for z−. Apparently, x = Re(z±) and Im(z±) =
±y. The signals z± are referred to as periodic analytic signals.

Fig. 1. Left: second-level discrete-spline WPs of orders second (top) and
tenth (bottom). Right: magnitude DFT spectra of these WPs

A polar representation of the signals z is z±[k] = ζ[k] e±ϕ[k],
where ζ[k]

def
=
√
x[k]2 + y[k]2 is the instantaneous amplitude

of the signal z (envelope), and ±ϕ[k]ϕ[k]
def
= arctan ±y[k]

x[k] is
the instantaneous phase of z±. Since x = Re(z), we have x
represented by x[k] = ζ[k] cos(ϕ[k]).

II. SPLINE-BASED WAVELET PACKETS

We designed a library of orthonormal wavelet packets (WPs)
in the space Π[N ] using filters derived from continuous and
discrete splines (see [1]). Although, theoretically the WPs have
infinite support, they are well localized in the time domain.
Their DFT spectra are flat and their shapes tend to rectangles
when the orders of generating splines increases. They provide
a variety of refined splits of the frequency domain into bands
of different widths, depending on the decomposition level.
The waveforms are symmetric. The second-level WPs derived
from discrete splines of the second and tenth orders and their
magnitude spectra are displayed in Fig. 1

A scheme of fast implementation of the discrete-spline-
based wavelet packet transform (WPT) is presented in [1]. The
transforms are executed in the spectral domain using the Fast
Fourier transform (FFT) by iterative application of critically
sampled two-channel filter banks to a signal. For example,
the Matlab execution of the 8-level WPT originating from
the 12-th-order discrete spline, of a signal comprising 245760
samples, takes 0.2324 seconds.

a) Outline of implementation of real-valued WPT: The
filter bank for the one-level transform, which originates from
the discrete splines of order 2r, is defined by its modulation



matrix

M[n] =
√

2

(
β[0][n] β[0]

[
n+ N

2

]
α[0][n] α[0]

[
n+ N

2

] ) , (4)

U4r[n] =
1

2

(
cos4r

π n

N
+ sin4r π n

N

)
, (5)

β[0][n] =
cos2r π nN√

2U4r[n]
, α[0][n] = ωn

sin2r π n
N√

2U4r[n]
. (6)

The matrix M[n]/2 is unitary. The one-level WPT of a
signal x ∈ Π[N ] is represented in a matrix form:(

ŵ[1],0[n]
ŵ[1],1[n]

)
=

1

2
M[−n] ·

(
x̂[n]
x̂ [n+N/2]

)
.

The coefficients
{
w[1],l[k]

}
, l = 0, 1, are derived by the

inverse DFT of
{
ŵ[1],l[n]

}
.

The matrix for the transition from the first to the second
decomposition level is M[2][n] = M[2n] and so on.

The signals ψ2r
[1],0 and ψ2r

[1],1, whose DFTs are
√

2β[0][n]

and
√

2α[0][n], respectively, are the WPs of the first level.
Their two-sample shifts form an orthonormal basis of the
signal space Π[N ]. The WPs for the subsequent decomposition
levels

{
ψ2r
[m],l

}
, where m= 1, ...,M is the index of the

decomposition level and l = 0, ...2m−1 is the wavelet packet’s
number, are derived iteratively in a conventional way. All the
computations are implemented in the frequency domain using
the FFT.

III. ANALYTIC WAVELET PACKETS

A. Wavelet packets

The analytic spline-based WPs and their DFT spectra are
derived from the corresponding WPs

{
ψ2r
[m],l

}
in line with the

scheme in Section I (see Eqs. (1), (2), (3)).
Denote by θ2r[m],l the discrete periodic HT of the wavelet

packet ψ2r
[m],l. Then, the corresponding analytic WPs are

ψ̄2r
±[m],l = ψ2r

[m],l ± iθ
2r
[m],l. (7)

a) Properties:
• The DFT spectra of the analytic WPs ψ̄2r

+[m],l and ψ̄2r
−[m],l

are located within the bands [0, N/2] and [N/2, N ],
respectively.

• Real component ψ2r
[m],l is the same for both the WPs

ψ̄2r
±[m],l. It is a symmetric oscillating waveform.

• The HT WP θ2r[m],l is an antisymmetric oscillating wave-

form. Its magnitude spectrum
∣∣∣θ̂2r[m],l[n]

∣∣∣ coincides with
the magnitude spectrum of the respective WPs ψ2r

[m],l

everywhere except for the points n = 0, N/2, where it is
zero.

B. Complementary set of wavelet packets

All the HP WPs θ2r[m],l with l = 1, ..., 2m − 2 have
orthonormality properties similar to the properties of the WPs
ψ2r
[m],l. However, this is not the case for l = 0, 2m − 1.

Therefore, the WPs θ2r[m],l with 0, 2m−1 are updated to achieve

Fig. 2. Left: WPs ψ10
[2],0

(top), ϕ10
[2],0

(center) and magnitude DFT spectra
of the latter. Right: same for the WPs ψ10

[2],2
and ϕ10

[2],2
, respectively

the orthonormality at the expense of a slight distortion of the
antisymmetry. Define a set of signals from the space Π[N ]

ϕ2r
[m],l[k]

def
= ψ̂2r

[m],l[0]/N + ψ̂2r
[m],l[N/2]/N + θ2r[m],l[k]. (8)

Figure 2 displays the WPs ψ10
[2],l, l = 0, 2 and ϕ10

[2],l, l = 0, 2,
from the second decomposition level and magnitude spectra
of WPs ϕ10

[2],l, l = 0, 2. The WPs are derived from tenth-order
discrete splines. A deviation from the antisymmetry is seen in
the WP ϕ10

[2],0.
a) Properties:

• The magnitude spectra of the cWPs
∣∣∣ϕ̂2r

[m],l[n]
∣∣∣ coincide

with the magnitude spectra of the respective WPs ψ2r
[m],l.

• For any m = 1, ...,M, and l = 1, ..., 2m − 2, the signals
ϕ2r
[m],l are antisymmetric oscillating waveforms. For l =

0 and l = 2m − 1, the shapes of the signals are near
antisymmetric.

• The orthonormality properties similar to the properties of
the WPs ψ2r

[m],l hold for the signals ϕ2r
[m],l:〈

ϕ2r
[m],l[· − p 2m], ϕ2r

[m],λ[· − r 2m]
〉

= δ[λ, l] δ[p, r]. (9)

We refer to the signals
{
ϕ2r
[m],l

}
, m = 1, ...,M, l =

0, ..., 2m − 1 as complementary wavelet packets (cWPs).
Similarly to the WPs

{
ψ2r
[m],l

}
, differenent combinations of

the cWPs can provide differenent orthonormal bases for the
space Π[N ]. Those can be, for example, the wavelet bases or
different versions of the Best Basis [2].

b) Implementation of cWPT: is similar to the implemen-
tation of the WPT with WPs

{
ψ2r
[m],l

}
. Denote β̃[0][n] =

i β[0][n], n 6= 0, β̃[0][0] = β[0][0] and α̃[0][n] = i α[0][n], n 6=
N/2, α̃[0][N/2] = α[0][N/2]. The modulation matrix is

M̃[n] =
√

2

(
β̃[0][n] −β̃[0]

[
n+ N

2

]
α̃[0][n] −α̃[0]

[
n+ N

2

] ) .
The decomposition of a signal x ∈ Π[N ] down to M -th

level produces 2MN transform coefficients. Such a redun-
dancy provides many options for the signal reconstruction,
such as: 1. A basis compiled from either WPs Ψ =

{
ψ2r
[m]

}
or Φ =

{
ϕ2r
[m]

}
. 2. Combination of bases compiled from



Fig. 3. Vibration signal from a slow-rotating REB

both Ψ and Φ WPs generates a tight frame of the space
Π[N ] with the redundancy rate 2. The bases for Ψ and Φ can
have different structure. 3. Frames with increased redundancy
rate, for example a combined reconstruction from several
decomposition levels. 4. In addition, the WPs and cWPs can
be used as the dictionaries for the Matching Pursuit scheme.

It is worth mentioning that the generating spline’s order
2r, which determines the spectra flatness and the number of
local vanishing moments, can be varied without change of the
computation complexity of the transforms.

C. Quasi-analytic wavelet packets

Define the set of complex-valued WPs, which we refer to
as the quasi-analytic wavelet packets:

ψ̃2r
±[m],l = ψ2r

[m],l ± iϕ
2r
[m],l, m = 1, ...,M, l = 0, ..., 2m− 1,

where ϕ2r
[m],l are the cWPs defined in Eq. (8). The WPs ψ̃2r

±[m],l

differ from the analytic WPs ψ̄2r
±[m],l by the addition of the

two numbers i ψ̂2r
[m],l[0]/N and i ψ̂2r

[m],l[N/2]/N . For a given
decomposition level m, these numbers are zero for all l except
for l0 = 0 and lm = 2m− 1. It means that for all l except for
l0 and lm the WPs ψ̃2r

±[m],l are analytic.

D. Application example: bearing fault detection

Due to their properties, such as (anti)symmetry, transient
oscillating structure and refined frequency resolution, the
spline-based WPs ψ2r

[m],l and ϕ2r
[m],l and their envelopes proved

to be efficient in solving a difficult problem of the early fault
detection in heavy-duty rolling element bearings (REB) via
the analysis of vibration signals. The vibration signals were
recorded in a real working environment. The fault produces
repeating pulses, which generate high-frequency transient os-
cillations. The pulses repetition frequency (RF) is determined
by the installment structure and the rotation speed of the
REB and can be evaluated theoretically. The problem is to
detect the pulses with the estimated RF (if they exist). The
problem is aggravated by presence of strong noise and multiple
extraneous vibrations.

The fault-related transient oscillations are confined in a cer-
tain frequency band B. We select WPs ψ2r

[m],l and ϕ2r
[m],l from

differenent decomposition levels whose spectra are located
within the band B. To catch the fault-related transient, we try
to find a waveform whose shape is close to the shape of the
transient and to determine its RF. It is done by application
of a version of the Matching Pursuit scheme followed by
the computation of the DFT spectra of the pursued signals’
envelopes. In many cases, the antisymmetric waveforms ϕ2r

[m],l

were advantageous over the symmetric ones ψ2r
[m],l.

Fig. 4. Top and Second from the bottom: Results of Pursuit by WPs ψ8
[7],10

and ϕ8
[7],10

, respectively. Second from the top and Bottom: Envelope spectra
of pursued signals for WPs ψ8

[7],10
and ϕ8

[7],10
, respectively. Green bars –

theoretical RF and its overtone

Figure 4 illustrates the application the of the Matching Pur-
suit scheme to a vibration signal recorded from a slow-rotating
REB (Fig. 3). The theoretical RF was 20.7432 Hz. The fault-
related transients were captured by the WPs ψ8

[7],10 and ϕ8
[7],10.

from the seventh decomposition level. The envelope spectra
determined the RF=20.83, which is close to the theoretical
RF. Comparing the bottom frame from Fig. 4 with the second
from the top frame, we see that the wavelet ϕ8

[7],10 indicates
on the fault more clearly than ψ8

[7],10.

IV. DIRECTIONAL 2D WPS

A. Design of directional WPs

A standard procedure for the design of two-dimensional
(2D) WPs is to compute the tensor products of 1D WPs:

ψ2r
[m],λ,l[k, n] = ψ2r

[m],λ[k]ψ2r
[m],l[n].

These 2D WPs are separable and lack a directionality. To
derive a collection of 2D WPs oriented in a multiple directions,
we compute the tensor products of quasi-analytic 1D WPs:

ψ̃2r
+[m],λ,l[k, n] = ψ̃2r

+[m],λ[k] ψ̃2r
+[m],l[n],

ψ̃2r
−[m],λ,l[k, n] = ψ̃2r

+[m],λ[k] ψ̃2r
−[m],l[n]

and take real parts of these complex-valued WPs:

Ψ2r
±[m],λ,l[k, n]

def
= Re(ψ̃2r

±[m],λ,l[k, n]) (10)

= ψ2r
[m],λ[k]ψ2r

[m],l[n]∓ ϕ2r
[m],λ[k]ϕ2r

[m],l[n].

Such a design is somewhat similar to the design of 2D
directional wavelets in [3], [4]. Figure 5 displays directional
WPs Ψ8

±[3],λ,l from the third decomposition level. The WPs
are derived from the eighth-order discrete splines. 30 dif-
ferenent directions are seen in the figure. Note that the
WPs Ψ8

+[3],λ,l are oriented to north-east, while Ψ8
+[3],λ,l are

oriented to north-west. The WPs from the mth level comprise
2× 2m × (2m − 1) differenent directions.

B. Implementation of directional WPTs

If X is a 2D array to be processed, the two transforms with
the tensor-product WPs ψ2r

[m],λ,l[k, n] = ψ2r
[m],λ[k]ψ2r

[m],l[n]

and ϕ2r
[m],λ,l[k, n] = ϕ2r

[m],λ[k]ϕ2r
[m],l[n] are implemented, as



(a) (b)

Fig. 5. 2D WPs from the third decomposition level. Left: Ψ8
+[3],λ,l

. Left: Ψ8
−[3],λ,l

, λ, l = 0, ..., 7

described in [1], thus producing two coefficients arrays Cψ and
Cϕ, respectively. These arrays are combined into the arrays
C+

def
= Cψ − Cϕ and C−

def
= Cψ + Cϕ, which comprise of

the transform coefficients of the array X with the directional
WPs Ψ2r

+[m],λ,l and Ψ2r
−[m],λ,l, respectively. Subsets C̄± ⊂ C±

are selected that are associated with a certain structure B̄±
(wavelet or the Best Bases, for example) consisting of shifts
of the WPs Ψ2r

±[m],λ,l, respectively. In that case the WPs
Ψ2r

±[m],λ,l provide a tight frame of the space Π[N,N ], with
the redundancy rate 2. After some manipulations on the
coefficients C̄±, such as thresholding, for example, the inverse
transforms have produced the two arrays X± associated with
the WPs Ψ2r

+ , and Ψ2r
− , respectively, which have different

orientations. Therefore, neither of the arrays X+ and X−
provide full restoration of X. A perfect reconstruction of X
is achieved by averaging X̄ = (X+ + X−)/2.

C. Application example: “Barbara” denoising

This simple example illustrates difference between the
performance of directional and regular tensor-product (TP)
wavelets. The directional and TP four-level wavelet transforms
derived from 8-th order discrete splines are applied to the
“Barbara” image affected by 30 Db Gaussian noise (PSNR
=18,6 Db). The transform coefficients are soft thresholded and
the images are restored in line with the above scheme. The
directional transform produced better denoising and retained
much more details and lines in the image than the TP one.
The PSNRs are 27.18 versus 25.07 Db. Results are displayed
in Fig. 6. In addition, partial reconstruction of the image by
the arrays X+ and X− is displayed in the figure.

V. CONCLUSION

We presented a scheme for the design and implementa-
tion of the spline-based analytic WPTs that, in a 2D case,
generate a diversity of directional WPTs. The transforms
are easy to manipulate and fast to implement. For example,
MATLAB implementation of the six-level directional WPT
of the 512 × 512 image takes 0.8 sec. Having at hand such
a versatile and easily operated toolbox, we plan to apply it
to variety of signal and image processing problems such as
analysis of technological and biomedical signals, detection of

Fig. 6. Topt: Partially restored “Barbara” image by X+ (left) and X− (right).
Bottom: Fragments of the image restored from directional (left) and TP (right)
wavelet transforms

transient events, image denoising, deblurring and inpainting,
target detection and processing of hyperspectral data.
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