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Abstract—Manifold models in data analysis and signal process-
ing have become more prominent in recent years. In this paper,
we will look at one of the main tasks of modern signal processing,
namely, at analog-to-digital (A/D) conversion in connection with
a simple manifold model (circle). We will focus on Sigma-Delta
modulation which is a popular method for A/D conversion of
bandlimited signals that employs coarse quantization coupled
with oversampling. Classical Sigma-Delta schemes would provide
mismatches and large errors at the initialization point if the signal
to be converted is defined on a circle. In this paper, our goal is to
get around these problems for higher order Sigma-Delta schemes.
Our results show how to design an update for the second and
third order schemes based on the reconstruction error analysis
such that for the updated scheme the reconstruction error is
improved.

I. INTRODUCTION

A. Analog-to-digital conversion

Whenever data is processed using computers, analog-to-
digital (A/D) conversion is used. It comprises two stages:
sampling and quantization. As a result of the latter, each value
of a discrete signal is mapped to some element from a finite
alphabet. The extreme case when such alphabet consists of
only two elements {−1, 1} is called 1-bit quantization.

Digital-to-analog (D/A) conversion, i.e., a process of recon-
structing the original signal from quantized values, is usually
carried out by applying an appropriate low-pass filter. The
accuracy of such reconstruction serves as a main criteria for
the quality assessment of the quantization scheme.

A popular method for the quantization of bandlimited
functions is the so called Sigma-Delta (Σ∆) modulation. This
method couples coarse quantization alphabet with substantial
oversampling which, in its turn, makes the design of cheap
analog circuits of low complexity possible. Σ∆ modulation
has been known to circuit engineers since the 1963 pioneering
work [1] of Inose and Yasuda; a rigorous mathematical study
was initiated by Daubechies and DeVore in [2] in the early
2000’s. Since then, the mathematical literature on this method
of quantization has grown rapidly. Early papers on Σ∆ mod-
ulation focused on the reconstruction accuracy as a function
of oversampling rate in the context of bounded bandlimited
functions on the real line [3], [4], [5], [6]. Furthermore, Σ∆
modulation schemes were extended to finite frame expansions
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in [7], [8], [9]. Also, a number of papers provide results for
Σ∆ modulation in compressed sensing setting [10], [11], [12].

Despite the growing importance of manifold models in data
and signal processing, there is still very little quantization
literature available for such models, both for Σ∆ modula-
tion and other quantization methods. For the special case of
Grassmannian manifolds, which arise naturally in wireless
communications, there appeared some papers studying their
quantization properties [13]. Recently, the problem of recov-
ering an unknown data point on a given manifold from 1-bit
quantized random measurements was studied in [14]. What
concerns Σ∆ modulation, the first attempt to generalize the
results for bandlimited functions on the real line to those on
the one-dimensional torus, was made by the authors in [15].
The main motivation behind this attempt was and continues
to be the connection between Σ∆ and digital halftoning [16].
In order to pave the way to apply halftoning for priniting on
closed surfaces, one first needs to understand the behavior
of such approaches for the simplest closed one-dimensional
manifold, the circle. This paper is a follow-up work where we
extend our previous results to higher order Σ∆ schemes.

B. Our contribution

In [15], we focused on the first order Σ∆ scheme on a
circle. In order to avoid mismatches in the scheme caused
by this setting and to improve the reconstruction error, we
proposed an update, namely, a small constant function shift
by an appropriate amount.

In this paper, the contributions are two fold:
1) We extend the error analysis in [15] to the case of m-th

order Σ∆ schemes (see Proposition 2).
2) Motivated by the error analysis, we show how to find an

update (uniform or non-uniform shift) for the second and third
order Σ∆ schemes such that the shifted function is recovered
with the accuracy of O(N−m), m = 2, 3 (see Theorems 1, 2).

II. PRELIMINARIES

A. Basics of Σ∆ modulation

Given a (finite or infinite) sequence of samples (yn)n∈Z, the
1-bit Σ∆ quantizer runs the following iteration for n ∈ Z:

vn = (h ∗ v)n + yn − qn,
qn = sign((h ∗ v)n + yn),

(1)



where qn are the quantized values, vn are the state variables,
h is the feedback filter described by the recurrence relation
(h∗v)n =

∑k
j=0 hjvn−j , and sign(x) is the signum function.

Sometimes, it is useful to rewrite the first line in (1) in
terms of another state variable un. If yn− qn can be rewritten
as an m-th order backward finite difference of some bounded
sequence un, i.e.,

∆mun = yn − qn, (2)

then it is said that (1) is the m-th order Σ∆ quantizer.
The first order Σ∆ quantizer (i.e., with the feedback filter

h = (0, 1)) is known to be stable. In case of higher order
schemes, the feedback filter should be chosen carefully, so
that the stability is guaranteed. The following stability criterion
provides a sufficient condition for the stability of a Σ∆ scheme
(1).

Proposition 1 (Stability Criterion). [3], [17] Consider a Σ∆
quantizer given by the recurrence relation (1). If

‖h‖`1 ≤ 2− ‖y‖`∞ , (3)

then the modulator is stable for all inputs yn.

Stability is a crucial property for Σ∆ modulation, and the
reconstruction error analysis of Σ∆ modulation typically relies
on it, namely, on the boundedness of the state variables vn (or
un) for given yn and qn.

A reconstruction error bound for 1-bit Σ∆ quantizer in [2]
establishes a polynomial error decay of O(λ−m), where λ is
a factor, by which the function is oversampled with respect
to its Nyquist frequency. Later, an exponential error decay
of O(2−rλ) with r ≈ 0.102 was achieved in [3], [4] by
combining Σ∆ schemes of different orders. This is the best
known error decay rate, which is also known to be optimal
[5], [6]. In this paper, we will follow the approach of [4], but
only for fixed orders, hence expecting polynomial error bounds
similar to those obtained in [2]. This will be sufficient for
achieving our main goal: understanding how to update the Σ∆
modulation scheme to make it fit the circular framework better
and assessing the improvement in accuracy of reconstruction
after the update.

B. Analog-to-digital conversion on a circle

Let us briefly review sampling, quantization and reconstruc-
tion of K-bandlimited functions (i.e., supp(f̂) ⊂ [−K,K])
f ∈ L2(T) whose domain is a unit circle T = {z ∈ C : |z| =
1}. Uniformly sampling f on a unit circle at a rate N/2π
(N ∈ N) gives the samples

yn := f (2πn/N) , n ∈ {0, 1, ..., N − 1}. (4)

Note that there is a one-to-one correspondence between the
samples of 2π-periodic functions on the real line and the
samples of functions on a unit circle. However, there will be
no such correspondence between the quantized values.

Motivated by Shannon’s sampling theorem, we define a
reproducing kernel ϕK ∈ L2(T) such that

ϕ̂K(ξ) = 1, |ξ| ≤ K and ϕ̂K(ξ) = 0, |ξ| > K. (5)

By the Fourier inversion theorem and some computations, we
have

ϕK(x) = sin
(
(2K + 1)x

2

)
/ sin

(x
2

)
. (6)

In fact, (6) is the Dirichlet kernel whose convolution with
any 2π-periodic function gives the n-th degree Fourier series
approximation of that function. Therefore, (6) is indeed the
reproducing kernel for K-bandlimited functions on T.

Taking the Fourier series expansion of f̂ and using the
inverse Fourier transform yields

f(t) =
1

N

∑N−1

n=0
f
(
2πn

N

)
ϕK

(
t− 2πn

N

)
(7)

for any N = 2λK+1, where λ ∈ R≥1 is the oversampling pa-
rameter. Formula (7) is the analog of Shannon’s interpolation
formula for functions defined on a unit circle T.

The standard approach to function recovery from its quan-
tized values on R uses the Shannon’s interpolation formula,
where the samples are replaced by the quantized values. For
the recovery from quantized values on T we have, conse-
quently,

fr(t) =
1

N

∑N−1

n=0
qnϕ

K
(
t− 2πn

N

)
, (8)

where fr(t) denotes the reconstructed function.
Let the instantaneous error e(t) at time t be given by the

pointwise difference

|f(t)− fr(t)| =
1

N

∣∣∣∣∑N−1

n=0
(yn − qn)ϕK

(
t− 2πn

N

)∣∣∣∣ .
The quality of reconstruction can be measured by a variety of
functional norms on e(t). Here, we will use the norm ‖e‖L∞
which is one of the standard choices.

III. ERROR ANALYSIS FOR THE SECOND AND HIGHER
ORDER Σ∆ SCHEMES ON A CIRCLE

Error analysis for the first order Σ∆ scheme on a circle was
given by the authors in [15]. Before extending it to the m-th
order Σ∆ schemes, we will present the following two lemmas
(the proofs will be omitted due to space limitations).

Lemma 1. Denote ϕKn := ϕK
(
t− 2πn

N

)
. Then, for the

sequences (ϕKn )n∈N and (un)n∈N we have∑N−1

n=0
∆munϕ

K
n = (−1)m

∑N−1

n=0
un∆mϕKn+m

+
∑m

k=1
(−1)k∆m−ku−1∆k−1ϕKk−1

+
∑m

k=1
(−1)k+1∆m−kuN−1∆k−1ϕKN+k−1.

Lemma 2. Denote ϕKn as in Lemma 1. Then, for the k-th order
finite difference of ϕKk we have for some τ ∈

(
t− 2πk

N , t
)

∆kϕKk = (−1)k
(
2π

N

)k
(ϕK)(k)(τ),

where (ϕK)(k)(τ) is the k-th order derivative.

Now we can proceed with the error estimate.

Proposition 2 (Error analysis for m-th order Σ∆). Suppose
f ∈ L2(T) and ϕK ∈ L2(T) satisfies (5). Suppose yn :=



f (2πn/N) serves as an input to the m-th order (m ≥ 2)
Σ∆ quantizer given by (1) and (2) with the stability criterion
(3) satisfied. Assume that the state variables are initialized as
follows: u−1 = u−2 = ... = u−m := 0.

Then, for all t ∈ T,

|f(t)− fr(t)|

≤ (2π)m−1‖u‖`∞
Nm

(∥∥(ϕK)(m)
∥∥
L1 +

∥∥(ϕK)(m−1)
∥∥
L∞

)
+

1

N

∑m−1

k=1

(
2π

N

)k−1 ∥∥(ϕK)(k−1)
∥∥
L∞
|∆m−kuN−1|. (9)

Proof sketch. Due to the initialization of un and the fact that
∆k−1ϕN+k−1 = ∆k−1ϕk−1 we can simplify the result in
Lemma 1. Then, we have

|f(t)− fr(t)|

= 1
N

∣∣∣∑N−1
n=0 (yn − qn)ϕKn

∣∣∣ = 1
N

∣∣∣∑N−1
n=0 ∆munϕ

K
n

∣∣∣
≤ 1

N

(∑N−1
n=0

∣∣(−1)mun∆mϕKn+m

∣∣
+
∑m
k=1

∣∣(−1)k+1∆m−kuN−1∆k−1ϕKk−1

∣∣ ). (10)

Now rewrite the second sum in (10) as two summands by
extracting the last term, apply Lemma 2 and estimate the result
in terms of infinity norm. We get∑m

k=1

∣∣(−1)k+1∆m−kuN−1∆k−1ϕKk−1

∣∣
≤ ‖u‖`∞

(
2π
N

)m ∥∥(ϕK)(m−1)
∥∥
L∞

+
∑m−1
k=1

(
2π
N

)k−1 ∥∥(ϕK)(k−1)
∥∥
L∞
|∆m−kuN−1|.

(11)Let us now evaluate the first sum in (10).∑N−1
n=0

∣∣(−1)mun∆mϕKn+m

∣∣≤‖u‖`∞(2π
N

)m−1∥∥(ϕK)(m)
∥∥
L1 .

Inserting the above result and (11) into (10) completes the
proof. �

Essentially, Proposition 2 tells us that whilst the first term
of the error estimate (9) gives the error of O(N−m) for the
m-th order Σ∆ quantizer, then the second term always gives a
sum of larger errors of order up to O(N−1), hence increasing
the order of the Σ∆ scheme without making any changes to
the existing scheme becomes meaningless.

IV. MODIFICATION OF THE Σ∆ SCHEME

The question to address in this section is how to improve
the reconstruction error (9) by modifying the m-th order Σ∆
modulation scheme described in Section II.A.

We propose to use the recurrence relation (1) once again on
updated samples

ỹn := yn + δn, (12)

where some small δn is added at each iteration. We denote
the resulting updated variables ũn and q̃n. We require that ỹn
are the samples of a K-bandlimited function f̃(t) and denote
the error between this function and its reconstruction ẽ(t) :=
|f̃(t) − f̃r(t)|. In what follows, we will show that finding
an appropriate sequence (δn)n∈N leads to the error ẽ(t) of

O(N−m) for the m-th order Σ∆ quantizer for m = 2, 3 and
improves the distribution of the error |f(t)− f̃r(t)| around the
circle.

Clearly, updates δn yield a certain new error eδ(t) :=
|f(t)− f̃(t)|. We will take some effort to analyze our setting
and conclude that making the Σ∆ scheme consistent with the
circular framework (which we haven’t done yet, rather using
the default scheme designed originally for the real line) will
naturally require eδ(t).

Let us write a lower bound estimate of
∥∥f − fr∥∥L∞ using

the fact that the error maximum is greater than its average.∥∥f − fr∥∥L∞
≥ 1

N2

∣∣∣∑N−1
k=0

∑N−1
n=0 (yn − qn)ϕK

(
2πk
N
− 2πn

N

) ∣∣∣
= 1

N

∣∣∣∑N−1
n=0 (yn − qn) 1

N

∑N−1
k=0 ϕK

(
2πk
N
− 2πn

N

) ∣∣∣
= 1

N

∣∣∣∑N−1
n=0 yn −

∑N−1
n=0 qn

∣∣∣. (13)

It is clear that
∑N−1
n=0 yn−

∑N−1
n=0 qn is different from zero for

an arbitrary function since
∑N−1
n=0 yn ∈ R and

∑N−1
n=0 qn ∈

Z. Using the initialization u−1 = u−2 = ... = u−m := 0
and computing the telescoping sum, we have

∑N−1
n=0 ∆mun =

∆m−1uN−1 which together with (2) yields∑N−1
n=0 yn −

∑N−1
n=0 qn = ∆m−1uN−1. (14)

Therefore, for the lower bound to be greater than or equal
to zero in (13), we need a vector of updates (δn)N−1

n=0 whose
entries sum up to ∆m−1uN−1.

Although the error eδ(t) cannot be avoided in general, we
can argue that this is a reasonable trade-off. Firstly, in some
applications the update could be subtracted later from the
reconstructed function. Secondly, in the applications where
this is not the case (e.g., digital halftoning), an error caused
by a well-designed update (which is constant or smoothly
varying) can be less audible/visible than highly oscillating
initial error.

A. Second order Σ∆ scheme

It was shown in [15] that for the first order scheme it is
sufficient to choose a constant update δ = −N−1vN−1 in
order to eliminate the boundary term of summation by parts
in the error estimate. From (9) we see that in the second order
case there is only one summand larger than of O(N−2) and
it involves the remainder |∆uN−1|. Therefore, we will choose
a constant update similar to that in [15], namely,

δ = −N−1∆uN−1. (15)

The following theorem ensures that this approach is valid.

Theorem 1 (Uniform update for 2-nd order Σ∆). Let the
assumptions in Proposition 2 hold and assume the order of
Σ∆ quantizer m = 2. Then, using in (1) the updated samples
(12) with δ given by (15) leads to ∆ũN−1 = 0 and the error
ẽ(t) := |f̃(t)− f̃r(t)| is of O(N−2).

Proof sketch. The proof follows from the main result in [15] by
defining ωn := ∆un and working with the first order relation



∆ωn = yn − qn. The error estimate is obtained by rewriting
(9) with updated variables. �
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Fig. 1. Reconstruction errors for classical and updated Σ∆ schemes
on a circle. In all experiments we use f(t) = 0.1 sin(5t) cos(10t) +
0.2 with bandwidth K = 15, N = 3002 (in (a)) or N =
6002 (in (b), (c)) and feedback filters (0, 1), (0, 4/3, 0, 0,−1/3),
(0, 91/72, 0, 0, 0, 0, 0,−13/36, 0, 0, 0, 0, 0, 7/72) for the 1-st, 2-nd and 3-
rd order schemes, respectively. (a) Comparison of errors ẽ(t) := |f̃(t)−f̃r(t)|
for Σ∆ schemes of order m = 1, 2, 3. (b) Differences f(t) − fr(t),
f(t)− f̃r(t) for the 2-nd order Σ∆ scheme (cf. Theorem 1). (c) Differences
f(t)− fr(t), f(t)− f̃r(t) for the 3-rd order Σ∆ scheme (cf. Theorem 2).

B. Third order Σ∆ scheme
The third order case is still an object of further research, but

we would like to share our partial results. We have two un-
wanted large terms in (9) involving the remainders |∆2uN−1|
and |∆uN−1|. Here, we cannot achieve ẽ(t) of O(N−3) by a
constant update. In order to find a suitable sequence of updates
(δn)n∈N, we first examine how the updates propagate with
each iteration. For the third order Σ∆ quantizer without the
updates we can set up a system of equations( un

un−1
un−2

)
=
(

3 −3 1
1 0 0
0 1 0

)( un−1
un−2
un−3

)
+
(
yn−qn

0
0

)
= Mun−1 + (yn − qn)e1. (16)

For the updated quantization scheme, we have( ũN−1

ũN−2

ũN−3

)
= MNu−1 +

∑N−1
n=0 M

N−1−n(yn + δn − q̃n)e1

=
∑N−1
n=0 M

N−1−n(qn + δn − q̃n)e1 + uN−1. (17)

It is empirically satisfied in many cases that the sum of
the propagation of (qn − q̃n) is equal to 0. In the first
step we assume the validity of the latter. Next, we will
compute explicitly the propagation of δn using the Jordan
decomposition M = V JV −1. Omitting some simplification
steps, we get

MN−1−nδne1 = V JN−1−nV −1δne1 = δnV J
N−1−ne3

=
δn
2

(
(N−n+1)(N−n)
(N−n)(N−n−1)

(N−n−2)(N−n−1)

)
. (18)

Analyzing various sequences (δn)n∈N is out of the scope
of this paper. Here, we will present a certain update which
achieves our goal of having ẽ(t) of O(N−3) for the third
order Σ∆ quantizer.

Theorem 2 (Harmonic update for 3-rd order Σ∆). Let the
assumptions in Proposition 2 hold and assume the order
of Σ∆ quantizer m = 3. Set δn = δ1w1

n + δ2w2
n where

δ1,δ2 ∈ R are the unknown scalars and w1 = (1, . . . , 1) ∈
RN , w2 =

(
sin( 2πn

N )
)N−1

n=0
are vectors. Assume in (17)∑N−1

n=0 M
N−1−n(qn − q̃n)e1 = 0. The unknowns can be ob-

tained from(
δ1

δ2

)
=
(

0 − 1
N

− 2
N tan( πN ) (1+ 1

N ) tan( πN )

)(
∆uN−1

∆2uN−1

)
. (19)

Then, using in (1) the updated samples (12) with δn obtained
from (19) leads to ∆2ũN−1 = 0 and ∆ũN−1 = 0. The error
ẽ(t) := |f̃(t)− f̃r(t)| is of O(N−3).

Proof sketch. For given δn, we carry out computations in (18)
further and get

N−1∑
n=0

MN−1−nδne1 =
1

2

( N(N2+3N+2)
3

N(N+1)
2 cot( πN )

N(N2−1)
3

N(N−1)
2 cot( πN )

N(N2−3N+2)
3

N(N−3)
2 cot( πN )

)(
δ1

δ2

)
.

Now insert the above result in (17) and multiply from the left
by
(

1 −1 0
1 −2 1

)
. Now we require that the resulting left-hand side

(∆ũN−1,∆
2ũN−1)T = 0. This gives the condition(

0
0

)
=
(
N(N+1)

2
N
2 cot( πN )

N 0

)(
δ1

δ2

)
+
(

∆uN−1

∆2uN−1

)
. (20)

Solving the above equation for (δ1, δ2)T gives the result in
(19). The error estimate is obtained by rewriting (9) with
updated variables. �

Remark. It is easy to see from (19) that δ1 = O(N−1) and
δ2 = O(tan( πN )). It is an interesting open question whether
it is possible to design δn = δ1w1

n + δ2w2
n in such a way

that δ2 is of smaller order. This would not reduce the overall
contribution of O(N−1) to the error made by δn, however, it
might be preferable in applications.

We complement theoretical results with numerical demon-
stration in Fig. 1.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we justified the necessity of updating the clas-
sical Σ∆ modulation scheme if the function to be quantized is
defined on a circle. We proposed the sequence of updates for
the second and third order Σ∆ schemes and complemented
our results with the reconstruction error analysis. For the
schemes of order m ≥ 3, designing the sequence of updates
becomes less trivial. The important open question is how to
find an optimal update for a Σ∆ scheme of arbitrary order.
Furthermore, it would be of interest to extend the results to
more complicated manifold models.
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