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Abstract—Determining the phase of a rhythm embedded in
a time series is a key step in understanding many oscillatory
systems. While existing approaches such as harmonic regression
and cross-correlation are effective even when some data are
missing, we show that they can produce biased estimates of
phase when missing data are consecutive (i.e., there is a gap).
We propose a simple modification of the least-squares approach,
Gap Orthogonalized Accelerated Least Squares (GOALS), which
addresses this issue with a negligible increase in computational
expense. We test GOALS against other approaches on a synthetic
dataset and on a real-world dataset of activity recorded by an
Apple Watch, showing in both cases that GOALS is effective at
recovering phase estimates from noisy data with gaps.

I. INTRODUCTION

Phase estimation of oscillatory data becomes more difficult
when data are noisy or when data points are missing. Often
missing data are random, or can be approximated by a random
process [6], [15]. However, in many applications, missing data
are continuous and form a gap, such as when a sensor breaks or
when measurements can only be made at certain times. Here,
we review available approaches to phase estimation with noisy
data and find that gaps can significantly bias phase estimates;
the goal of this paper is to correct this bias.

There are many proposed gap-filling methods for an-
alyzing noisy oscillatory data with missing values, such
as cubic splines and empirical mode decomposition [16],
[14]. Instead, we propose a modification of the ordinary
least squares method, Gap Orthogonalized Accelerated Least
Squares (GOALS), which avoids biased phase estimates using
an orthogonal basis over existing data. GOALS is comparable
in computation time to ordinary least squares and significantly
faster than iterative nonlinear least squares.

Rigorously, suppose data d(t) are modeled as the sum of a
signal q(t, φ) and noise n(t):

d(t) = q(t, φ) + n(t),

where q(t, φ) is a periodic function in time t with unknown
phase φ. We consider the scenario in which the period is
known (at least approximately) and the data correspond to
roughly one period (over which the phase is assumed con-
stant), i.e., t ∈ Ω ≡ (t0, t0 + 2π

ω ) in terms of the known
frequency ω. When there is a gap in the data, data exist only
for t ∈ Ωg ⊂ Ω.

For notational simplicity, we also define the inner products

〈x(t), y(t)〉 ≡
∫

Ω

x(t′)y(t′)dt′

and
〈x(t), y(t)〉g ≡

∫
Ωg

x(t′)y(t′)dt′.

II. CONVENTIONAL METHODS

To illustrate the potential bias caused by gaps in noisy
data, we consider several common methods for determining
the phase of a rhythm. One approach is to determine when
the rhythm peaks or crosses a threshold [1], [9]; since we do
not know a priori whether peaks or threshold crossings occur
during gaps in data, this approach cannot be used here. We
will thus consider (1) harmonic regression [1], [2], [3], [7],
[8] and (2) cross-correlation [4], [12], [13].

A. Harmonic regression (cosinor analysis)
Since the frequency ω is known, a basic sinusoidal model

for the signal is given by

q(t, φ) = a1 sin(ωt) + a2 cos(ωt),

where a1 and a2 are determined from the phase φ. Following
the ordinary least squares approach, we seek to minimize the
integrated square error

‖n(t)‖22 = ‖d(t)− a1 sin(ωt)− a2 cos(ωt)‖22,

which is minimized when πa1 = 〈d(t), sin(ωt)〉 and πa2 =
〈d(t), cos(ωt)〉, yielding a phase φ = arg(a1 + ia2).

When a gap exists, inner products must be computed over
Ωg , i.e. πa1 = 〈d(t), sin(ωt)〉g and πa2 = 〈d(t), cos(ωt)〉g .
Since 〈sin(ωt), cos(ωt)〉g 6= 0 in general, the resulting phase
estimate may not minimize ‖n(t)‖22.

B. Cross-correlation
Let s(t) be a function with period 2π/ω which models oscil-

lations in the observed data d(t) and define the modeled signal
as q(t, φ) = s(t − φ). Under this assumption, the integrated
square error ‖n(t)‖22 is minimized when 〈d(t), s(t − φ)〉 is
maximized, i.e., the function s(t) is shifted to best agree with
the observed data. Again, when a gap exists, inner products
must be computed over Ωg; the phase φ which maximizes
〈d(t), s(t− φ)〉g may not minimize ‖n(t)‖22.



III. GAP ORTHOGONALIZED ACCELERATED LEAST
SQUARES (GOALS)

To account for the loss of orthogonality over Ωg , we replace
the basis functions cos(ωt), sin(ωt) with an orthogonalized set
of basis functions. Specifically, suppose data are observed at
times ti ∈ Ωg for i = 1, . . . , N and define the matrix A as

A =


1 sin(ωt1) cos(ωt1) · · ·
1 sin(ωt2) cos(ωt2) · · ·
...

...
...

. . .
1 sin(ωtN ) cos(ωtN ) · · ·

 ,
i.e., the matrix whose columns are the basis functions over
Ω evaluated at ti (including the constant function, sin(ωt)
and cos(ωt), and any desired higher harmonics); the QR
decomposition A = QR then yields an orthonormal matrix
Q whose columns are orthogonal over Ωg .

Let x(t), y(t) refer to the second and third columns of Q,
i.e., the columns corresponding to the newly orthogonalized
basis of the first harmonic. Following a similar procedure to
the least-squares minimization in Section II-A, the new phase
estimate is given as

φ = arg

(
〈x(t), d(t)〉g
〈x(t), sin(ωt)〉g

+ i
〈y(t), d(t)〉g
〈y(t), cos(ωt)〉g

)
.

Phase estimates for higher harmonics can be obtained by
repeating the above procedure for any remaining columns of
the matrix Q.

IV. EXAMPLES AND RESULTS

We first illustrate the effect of consecutive gaps using
synthetic data. Let

f(t, φ) = − sin

(
2π

100
(t− φ)

)
define a sinusoidal signal with known period 100 and phase
φ. For times ti = 1, . . . , 100, we generate noisy data as

di = f(ti, φ) + βi,

where βi are i.i.d. samples from N(α, 1), i.e., a standard
normal with mean α and unit variance. To simulate a gap,
data d30, . . . , d65 are discarded; to simulate random data loss,
36 data di are discarded equally likely at random. Remaining
data are used to find a phase estimate φest.

For each of α = 0, 0.5, 0.75, 1.0 (i.e., varying degrees
of bias) and for both consecutive and random data loss,
algorithms were tested by repeating the above procedure 1000
times with values of φ chosen uniformly at random from 0
to 100. By plotting φest against φ, we observe the ability of
each method to accurately recover phase; unbiased methods
should roughly follow the diagonal φest = φ. Although here
we change α which changes the mean level, similar effects
could also be seen by adding in higher harmonics.

Figure 1 shows results for harmonic regression and cross-
correlation (using f(t, 0) as the oscillatory model s(t)) in the

Fig. 1. Phase estimates φest compared to true phase φ for harmonic
regression and cross-correlation on a synthetic dataset with missing data. For
each of 1000 trials, a uniformly random phase φ was used to generate data
di from a 100-period sinusoidal signal f(t, φ) and i.i.d. noise βi sampled
from a Gaussian with mean α and variance 1; one third of the data were then
removed uniformly at random, with harmonic regression and cross-correlation
used to estimate phase from the remaining data. Results are shown for four
values of the noise bias α. Regardless of α, both methods recover phase to
good accuracy (i.e., along the diagonal φest = φ).

case of random data loss. Regardless of the bias α, phase
estimates φest loosely follow the true values φ, confirming
existing results that both methods can effectively determine
the signal phase when data are distributed evenly across one
period of oscillation.

When data are removed consecutively, both harmonic re-
gression and cross-correlation can provide biased phase es-
timates (Figure 2). The most significant deviation from the
diagonal, i.e., bias in phase estimation, occurs when the signal
peaks during the gap (φ ∼ 72.5), with more severe effects
when the noise bias α is greater. The error can be quantified
in terms of the mean squared error (MSE):

MSE =
1

1000

1000∑
j=1

(
φj − φjest

)2

,

where φj , φjest refer the true and estimated phase of the jth

trial. The MSE for harmonic regression and cross-correlation
appear as a function of the noise bias α in the leftmost plot
of Figure 3.

Figure 4 shows phase estimates using GOALS in the case
of consecutively removed data. Regardless of the noise bias
α, phases are recovered to good accuracy; the center plot of
Figure 3 shows the MSE to be independent of α. This suggests
that GOALS may be useful for phase estimation in cases where
gaps in data result in a biased estimate of the signal mean.
GOALS estimates for larger gap sizes appear in Figure 5; re-
orthogonalization appears useful up to gaps of roughly two-
thirds of a period.

The results have so far shown that harmonic regression and
cross-correlation can yield biased estimates of phase when the



Fig. 2. Repeating the analysis of Fig. 1 when data are removed consecutively,
i.e., d30, . . . , d65 are always discarded. Phase estimates are significantly
noisier than in Fig. 1 and are heavily biased when the signal peaks during
a gap (φ ∼ 72.5). Both cross-correlation and harmonic regression are more
significantly affected when the noise bias α is high.

Fig. 3. Mean squared error (MSE) for (left) harmonic regression and
cross-correlation, (center) Gap Orthogonalized Accelerated Least Squares
(GOALS), and (right) nonlinear least squares when estimating phase in the
context of Figure 2, i.e., when data are removed consecutively. MSE is
calculated over a range of values for the noise bias α; while GOALS and
nonlinear least squares perform equally well regardless of α, both harmonic
regression and cross-correlation decrease significantly in accuracy as the noise
bias approaches the magnitude of the signal (α = 1).

noise bias α is significant; in addition to re-orthogonalization
(i.e., GOALS), this concern can also be addressed by incorpo-
rating a vertical offset in, e.g., an iterative nonlinear method
[10], [11]. The rightmost plot of Figure 3 shows the MSE of
such a nonlinear approach to also be independent of α.

Figure 6 illustrates computation times required to estimate
phase from 1000 trials of the synthetic dataset using harmonic
regression, GOALS, and the Levenberg-Marquardt iterative
nonlinear approach implemented in MATLAB on a 2016
Macbook Pro (2.9 GHz Intel Core i7). Larger datasets (up
to 106 noisy samples) were also considered. GOALS is only
marginally more expensive than ordinary least squares, and
both are significantly cheaper than an iterative approach; all
three methods approach a similar computational complexity
with respect to number of data (∼ N1.1209, ∼ N1.2672,
∼ N1.1877, respectively).

Fig. 4. Phase estimates for the synthetic dataset with gaps (Fig. 2) using Gap
Orthogonalized Accelerated Least Squares (GOALS). Regardless of the noise
bias α, estimated phases φest are in good agreement with the underlying
signal phases φ, suggesting that the re-orthogonalized basis of GOALS can
effectively avoid estimation bias due to a gap in data.

Fig. 5. GOALS phase estimates for the synthetic dataset when the gap is
lengthened (up to 50, 60, 65 of 100 data consecutively removed, resp.). Noise
bias α is fixed at 0.75. Phase estimates become noisier as the gap becomes
larger, becoming heavily biased when roughly two-thirds of data are discarded.

Fig. 6. Log-log comparison of computation time for harmonic regression
(green), GOALS (blue), and nonlinear least squares (red) as a function of the
size N of the synthetic dataset (the noisy data with gaps from Figs. 2 – 4).
GOALS is comparable in expense to harmonic regression but significantly less
expensive than nonlinear least squares, with a more pronounced difference for
small N . The asymptotic slopes give estimates of the complexity (∼ N1.1209,
∼ N1.2672, ∼ N1.1877, respectively). Algorithms were implemented in
MATLAB on a 2016 Macbook Pro (2.9 GHz Intel Core i7).



We next apply the algorithms to a real-world dataset:
roughly 800 days of motion data collected from the Apple
Watch of one of the authors. Circadian phase has long been
a subject of interest in the biological literature; the ability
of wearables to record data such as activity, heart rate, and
sleep has generated a renewed interest in understanding the
relationship between circadian phase and measurable data [5].
A major difficulty in this context is the presence of regular
gaps in data when wearables are removed (especially during
sleep) – though we do not attempt to relate results to circadian
phase, the Apple Watch data thus provide an example of real-
world phase estimation from a noisy signal with gaps.

The Apple Watch dataset features “steps” data for one-hour
periods throughout each day, but with roughly eight hours of
data missing when the watch is removed during sleep or to
recharge. The resulting dataset thus contains 788 days with
∼ 16 data points each (one for each hour of observed activity);
since humans are typically more active at certain times of day,
the underlying signal can be thought of as oscillatory with a
24-hour period.

Daily phase estimates from cross-correlation (center) and
GOALS (right) appear in Figure 7. Since a sine wave is a
poor approximation for this signal, cross-correlation used a
signal s(t) estimated from data: for each hour of the day, the
recorded activity during that hour was averaged over the entire
dataset, with the resulting averages then combined to form an
oscillatory model s(t) tracking average motion throughout the
day. Phase estimates from cross-correlation were dominated by
the timing of the gap in data and were largely unaffected by
day-to-day variation in activity; in contrast, GOALS recovered
roughly the same phase on average (i.e., activity tends to be
highest in the middle of the day) but was much more effective
at following the large variation in daily activity.

Fig. 7. Estimated phase in activity using cross-correlation (center) and
GOALS (right) for a 788-day dataset of steps data recorded from an Apple
Watch. Cross-correlation used as its oscillatory model s(t) the average activity
for each hour in the dataset. Since the watch was reguarly removed during
sleep and to recharge, significant gaps exist in the recorded data (left). Phases
estimated by cross-correlation follow closely the timing of data gaps and were
not majorly affected by daily variations in recorded steps, while GOALS was
significantly more effective at tracking variations in day-to-day activity (i.e.,
was less biased toward the timing of gaps).

V. CONCLUSION

Harmonic regression and cross-correlation are commonly
used in phase estimation from noisy time series; we have
shown that these methods can yield substantially biased es-
timates of phase when there exist large gaps in observed data.
We instead propose a slight modification of the least-squares
approach using a new orthogonal basis obtained from QR
factorization. GOALS is computationally efficient (comparable
to ordinary least squares and significantly faster than iterative
nonlinear approaches) and avoids biased phase estimates due
to gaps; due to its ease of implementation, it is a simple and
practical solution for the estimation of phase from noisy time
series with gaps.
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