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Abstract—We consider a framework for generalized sampling
of graph signals that extends sampling results in shift-invariant
(SI) spaces to the graph setting. We assume that the input signal
lies in a periodic graph spectrum subspace, which generalizes the
standard SI assumption to graph signals. Sampling is performed
in the graph frequency domain by an arbitrary graph filter.
We show that under a mild condition on the sampling filter,
perfect recovery is possible using a correction filter that can be
represented as a spectral graph filter whose response depends
on the prior subspace spectrum and on the sampling filter. This
filter parallels the correction filter in SI sampling in standard
signal processing. Since the input space and the sampling filter
are almost arbitrary, our framework allows perfect recovery of
many classes of input signals from a variety of different sampling
patterns using a simple correction filter. For example, our method
enables perfect recovery of non-bandlimited graph signals from
their bandlimited measurements.

I. INTRODUCTION

Sampling theory for graph signal processing has been re-
cently studied with the goal of building a parallel of sampling
results in standard signal processing [1]–[4]. Conventional
sampling theory allows sampling and recovery of signals in
arbitrary subspaces using an almost arbitrary sampling kernel
[5]. These general results are particularly useful in the shift-
invariant (SI) setting where sampling and recovery reduce to
simple filtering operations [6].

To date, most works on sampling graph signals consider
recovery of discrete graph signals from their sampled version
[1]–[4], [7], [8]. Current approaches to sampling of graph
signals generally rely on vertex sampling. Due to the irreg-
ular nature of the graph, the vertex set used for sampling
is generally distributed nonuniformly. Its counterpart in the
time domain is general nonuniform sampling of an input.
An extension of generalized sampling to graphs was recently
proposed in [4]. This framework allows for arbitrary subspaces
and arbitrary sampling operators and offers a recovery method
that is in general given by operator inversion.

In this paper, our goal is to build a graph sampling frame-
work which parallels SI sampling for time domain signals. In
SI sampling, the input subspace has a particular SI structure.
Sampling is modeled by uniformly sampling the output of the
signal convolved with an arbitrary sampling filter. Under a
mild condition on the sampling filter, recovery is obtained by
a correction filter which has an explicit closed-form frequency
response. Here we show how one can extend these ideas to

graphs by defining an appropriate input space of graph signals
and sampling in the graph frequency domain. The recovery is
then given by a spectral graph filter whose response depends
on the prior subspace spectrum and the sampling filter. More
specifically, our framework relies on the following ingredients:
• We assume an input signal space called periodic graph

spectrum (PGS) subspace as a counterpart of the SI
subspace; and

• Sampling in the graph frequency domain [9] as a coun-
terpart of uniform sampling at the output of a filter.

Our approach reduces to the standard SI results in the case
of a graph representing the conventional time axis, and allows
recovery over graphs without having to invert general opera-
tors. We also allow perfect recovery of non-bandlimited graph
signals, in contrast to many prior sampling results on graphs.

We begin by defining a new class of subspaces, the PGS
subspace, which maintains the frequency structure of SI sub-
spaces in the graph frequency domain. The PGS subspace
depends on the given underlying graph and its associated graph
Fourier basis. We then define sampling in the spectral domain
by extending the notion of filtering and uniform subsampling
to arbitrary graphs. In particular, the combined affect of the
later operation in standard Fourier analysis is multiplying the
input spectrum by the sampling filter’s frequency response
and then aliasing in the frequency domain. We define graph
sampling by these operations extended to the graph Fourier
basis. With these definitions we show that a graph signal in
any PGS space can be recovered from its arbitrary samples
using a simple graph spectral filter.

This paper is organized as follows. Section II introduces
generalized sampling in SI spaces and sampling in the graph
frequency domain. The proposed framework of generalized
graph sampling is presented in Section III. Section IV de-
scribes relationships between ours and some existing works.
A numerical experiment for recovery of non-bandlimited graph
signals is shown in Section V. Finally, Section VI concludes
the paper.

II. SI AND GRAPH SAMPLING

A. Generalized Sampling in Shift-Invariant Spaces
Our goal is to propose a generalized graph signal sampling

method that parallels sampling in SI spaces in standard signal
processing [5], [6].



Sampling and recovery in SI spaces is illustrated in Fig.
1. The original (continuous-time) signal x(t) is filtered by a
sampling filter s(t) and then uniformly sampled with sampling
period T to generate the sampled (discrete) coefficients c[n].
This sampling operation can be formulated as

c[n] = 〈s(t− nT ), x(t)〉 = x(t) ∗ s(−t)|t=nT , (1)

where we assume s(t) satisfies the Riesz condition. In ban-
dlimited sampling, s(−t) = sinc(t/T ), where sinc(t) =
sin(πt)/(πt). However, s(t) can be arbitrary in the generalized
sampling framework.

The continuous-time Fourier transform (CTFT) of the sam-
ples c[n], denoted C(ω), can be represented as [10]:

C(ω) =
1

T

∞∑
k=−∞

S∗
(
ω − 2πk

T

)
X

(
ω − 2πk

T

)
. (2)

Thus, we can view sampling in the Fourier domain as multi-
plying the input spectrum by the filter’s frequency response,
and then aliasing the result with uniform intervals that depend
on the sampling period. In our definition of graph sampling,
we rely on this frequency-domain interpretation.

To recover x(t) from the samples, we assume that it is
known to lie in a SI subspace, namely,

x(t) =
∑
n∈Z

d[n]a(t− nT ), (3)

for some sequence d[n] where a(t) is a (known) real generator
satisfying the Riesz condition. In the Fourier domain, this prior
can be expressed as

X(ω) = D(ejωT )A(ω), (4)

where A(ω) is the CTFT of a(t) and D(ejωT ) is the discrete-
time Fourier transform (DTFT) of the sequence d[n], and is
2π/T periodic.

When x(t) lies in a SI subspace, it can be recovered
from its samples in Fig. 1 using a correction filter h[n]. The
corrected discrete signal d[n] is interpolated by a continuous
interpolation filter w(t) to yield the reconstructed signal x̃(t).
By choosing w(t) = a(t) and

H(ω) =
1

1
T

∑∞
k=−∞ S∗

(
ω−2πk
T

)
A
(
ω−2πk
T

) , (5)

we have perfect recovery x̃(t) = x(t). Note that this approach
does not require the input signal to be bandlimited.

B. Spectral Graph Theory

A graph G is represented as G = (V, E), where V and E
denote sets of vertices and edges, respectively. The number
of vertices is given as N = |V| unless otherwise specified.
We define an adjacency matrix A with elements amn that
represents the weight of the edge between the mth and nth
vertices; amn = 0 for unconnected vertices. The degree matrix
D is a diagonal matrix, with mth diagonal element [D]mm =∑
n amn.
Graph signal processing uses different variation operators

[11], [12] depending on the application and assumed signal
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Fig. 1. Generalized sampling framework for SI spaces. The signals x(t) and
x̂(t) are the original and reconstructed signals. The sequences c[n] and d[n]
are the discrete-time samples and the corrected samples.

and/or network models. Here, for concreteness, we use the
graph Laplacian L := D−A or its symmetrically normalized
version L := D−1/2LD−1/2. The extension to other variation
operators (e.g., adjacency matrix) is possible with a slight
modification for properly ordering its eigenvalues as long as
the graph is undirected without self-loops. Since L is a real
symmetric matrix, it always has an eigendecomposition L =
UΛU∗, where U = [u0, . . . ,uN−1] is a unitary matrix con-
taining the eigenvectors ui, and Λ = diag(λ0, λ1, . . . , λN−1)
consists of the eigenvalues λi. We refer to λi as the graph
frequency.

A graph signal x ∈ CN contains elements x[n] that repre-
sent the signal value at the nth vertex. The graph Fourier trans-
form (GFT) is defined as x̂[i] = 〈ui,x〉 =

∑N−1
n=0 u

∗
i [n]x[n].

Filtering in the graph Fourier domain is defined as gener-
alized convolution [13]: xout := UG(Λ)U∗x, where the
filter response in the graph frequency domain is given by
G(Λ) := diag(G(λ0), G(λ1), . . . ), with G(λi) ∈ R.

C. Sampling in the Graph Frequency Domain

To define sampling over a graph, we extend sampling in
SI spaces expressed by (2) to the graph frequency domain
[9]. In particular, the graph Fourier transformed input x̂ is
first multiplied by a graph frequency filter S(Λ); the product
is then aliased with period K. This leads to the following
definition.

Definition 1 (Sampling of graph signals in the graph frequency
domain). Let x̂ ∈ CN be the original signal in the graph
frequency domain, i.e., x̂ = U∗x, and let S(Λ) be an
arbitrary sampling filter in the graph frequency domain. For
any sampling ratio M ∈ Z, the sampled graph signal in
the graph frequency domain1 is given by ĉ ∈ CK , where
K = N/M , and

ĉ(λi) =

M−1∑
p=0

S (λi+pK) x̂ (λi+pK) . (6)

In matrix form, the downsampled graph signal can be repre-
sented as ĉ = DsampS(Λ)x̂ with Dsamp =

[
IK IK . . .

]
.

1M is assumed to be a divisor of N for simplicity.
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Fig. 2. Generalized sampling framework in the graph frequency domain.

When the eigenvector matrix U∗ is the DFT matrix, this
definition coincides with DFT-domain sampling.

III. GRAPH SIGNAL RECOVERY WITH A SUBSPACE PRIOR

To consider subspace sampling for graph signals, we first
introduce a generalization of (4) to graphs.

A. Periodic Graph Spectrum Subspace

We assume that the graph signal has a periodic GFT
spectrum that parallels (4). In other words, x̂[i] =
d̂(λi mod K)A(λi) where A(λi) is the graph frequency domain
response of a generator and d̂(λk) for k = 0, . . . ,K − 1
are the expansion coefficients which are repeated periodically.
Formally, the PGS subspace is defined as follows:

Definition 2. A PGS subspace of a given graph G is a space
of graph signals that can be expressed as

W =

{
x[n]

∣∣∣∣∣x[n] =
N−1∑
i=0

d̂(λi mod K)A(λi)ui[n]

}
(7)

where A(λi) is an arbitrary graph frequency domain response
and d̂(λk) for k = 0, . . . ,K − 1 are expansion coefficients.

A PGS signal can be represented in matrix form as:

x := Ad̂ = UA(Λ)D>sampd̂. (8)

B. Sampling and Reconstruction Framework

With our definitions of PGS and GFT sampling, sampling
and reconstruction of signals over graphs can be represented
as in Fig. 2. This framework parallels that of SI sampling
described in Fig. 1, with all operations now performed in
the graph frequency domain. The important aspect is that the
correction filter has a diagonal graph spectral response, and
therefore can be implemented simply without matrix inversion.

We assume the original signal x ∈ CN lies in a PGS
subspace characterized by A. To sample it, we transform the
input to the GFT resulting in x̂ = U∗x. The output is then
filtered by the sampling filter S(Λ). The filtered signal is
downsampled to yield the sampled signal ĉ := DsampS(Λ)x̂.
In the reconstruction step, ĉ is filtered by the correction filter
H = H(Λ). Finally, d̃ = H(Λ)ĉ is upsampled to the original
dimension by D>samp, and the reconstruction filter A(Λ) is
applied to the upsampled signal. After performing the inverse
GFT, we obtain the recovered signal x̃. We now show how to
choose the correction filter H to enable perfect recovery.

Denote by S the sampling matrix. From Definition 1,

S∗ = Dsampdiag(S(Λ0), S(Λ1), . . . , S(ΛM−1))U
∗, (9)

where S(Λ`) := diag(S(λK`), S(λK`+1), . . . , S(λK(`+1)−1)).
To choose H we consider the following minimization problem:

min
H
‖HS∗Ad̂− d̂‖22, (10)

where the left-hand expression is the reconstruction of d̂.
Let us denote the subspaces spanned by A and S as A and
S, respectively. Suppose that A and S⊥ intersect only at the
origin and together span CN . In this case, (10) has a unique
solution that guarantees perfect recovery [5]. By solving (10)
for H, we obtain

H = (S∗A)−1 (11)

where the inverse always exists with the above condition on
A and S⊥. The recovery is then given by

x̃ = A(S∗A)−1S∗x

= A(S∗A)−1S∗Ad̂

= Ad̂ = x,

(12)

where (8) is used for the calculation from the first to the second
lines. Substituting (8) and (9) into (11), we have the explicit
expression

H(λk) =
1∑

` S(λk+K`)A(λk+K`)
. (13)

Note the similarity with (5).
As a special case, suppose that both the generator and

sampling filters are bandlimiting filters A(λi) = S(λi) = 1
for i ∈ [0,K − 1] and 0 otherwise. Then H(λi) = 1
and no correction filter is needed. This is equivalent to the
perfect recovery condition for bandlimited graph signals using
frequency domain sampling [9].

IV. RELATIONSHIP TO PRIOR WORKS ON GRAPH
SAMPLING

In [4], a generalized sampling method for graph signal
processing has been studied. Since the results did not assume
any particular structure on the input signals and sampling
filters, the recovery procedures where in general given by
matrix inversions. Here we focus on a special case of [4]
that extends SI sampling to the graph setting and enables
explicit expressions for the recovery filter in the graph Fourier
domain. Our solution represented in (12) allows for a broad
choice of S(λ) and A(λ). In particular, A(λ) is not restricted
to be a bandlimiting operator. If we have S(Λ) = A(Λ) =
diag(IK ,0), then our solution reduces to that of [4], which
is also equivalent to sampling theory with graph frequency
domain sampling studied in [9].

Many works in graph sampling theory like [1]–[3] assume
that the graph signal is K-bandlimited. That means only K
elements in x̂ are nonzero. Hereafter, we assume its first K
elements are nonzero for simplicity. This assumption implies
that the signal subspace is A = UABL(Λ)D>samp where



ABL(Λ) := diag(IK ,0N−K) is the binary response of the
graph low-pass filter, that bandlimits the graph signal. In other
words, they implicitly assume the graph signal lies in the PGS
subspace without periodicity of the spectrum; it is removed by
ABL(Λ).

While their subspace is a special case of the PGS as-
sumption, the sampling matrices are different. Let us define
IT ∈ {0, 1}K×N as a submatrix of the identity matrix IN
whose rows are specified by T , i.e., vertex indices remaining
after sampling. This can be regarded as a nonuniform subsam-
pling matrix. The works of [1], [2] simply use IT as S∗. The
paper [3] utilizes aggregation sampling that defines sampling
as observations gathered at a single vertex i. In this case,
S∗ = ITΨdiag(u∗0(λi), u

∗
1(λi), . . . )U

∗, where [Ψ]k,` = λk` .
Such matrices do not in general have a corresponding sampling
expression in the graph frequency domain as in (6). This leads
to the requirement of matrix inversion even for recovering
bandlimited graph signals though the signal lies in a PGS
subspace.

V. SIGNAL RECOVERY EXPERIMENTS

In this section, we validate our generalized sampling theory
via a toy example. The graph used is a random sensor graph
with N = 64. We downsample the input signal by a factor of
two so that K = 32. We consider the following functions:
• Generator function: A(λi) = 1− 2λi/λmax

• Sampling function: S(λi) =

{
1 i ≤ 32

0 i > 32.

The correction H(λi) is designed from A(λi) and S(λi)
by using (13). Each element in the expansion coefficients
d̂ is a random variable drawn from N (1, 1). The original
signal x generated by A(λ) is a full-band signal as shown in
Fig. 3(a). We sample the signal with a bandlimiting function.
For comparison, we also perform signal recovery using a
recovery filter S(λi) with no correction filter.

Fig. 3 shows the original and reconstructed signals and cor-
responding spectra. As can be seen, the input signal is perfectly
recovered with machine precision, while the bandlimiting filter
yields large error.

VI. CONCLUSIONS

In this paper, we presented a framework for generalized
sampling of graph signals that extends SI sampling to the
graph Fourier domain. Our approach is based on defining a
PGS input space of graph signals, and defining sampling in the
Fourier domain. This enables perfect recovery of a broad class
of input signals which are not necessarily bandlimited using
a simple filter in the graph frequency domain. In particular,
we demonstrate via an example that perfect recovery of
non-bandlimited graph signals is possible from bandlimited
measurements.
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Fig. 3. Experimental results of signal recovery experiments. MSEs of signal
recovery with the subspace prior and with the binary bandlimiting filters are
3.20× 10−28 and 2.04× 10−1, respectively.
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