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Abstract—Convolutional neural networks are state-
of-the-art for various segmentation tasks. While for
2D images these networks are also computationally
efficient, 3D convolutions have huge storage require-
ments and require long training time. To overcome this
issue, we introduce a network structure for volumet-
ric data without 3D convolutional layers. The main
idea is to include maximum intensity projections from
different directions to transform the volumetric data
to a sequence of images, where each image contains
information of the full data. We then apply 2D convo-
lutions to these projection images and lift them again
to volumetric data using a trainable reconstruction
algorithm. The proposed network architecture has less
storage requirements than network structures using 3D
convolutions. For a tested binary segmentation task, it
even shows better performance than the 3D U-net and
can be trained much faster.

I. Introduction
Deep convolutional neural networks have become a

powerful method for image recognition ([1], [2]) . In the
last few years they also exceeded the state-of-the-art in
providing segmentation masks for images. In [3], the idea
of transforming VGG-nets [2] to deep convolutional filters
to obtain semantic segmentations of 2D images came up.
Based on these deep convolutional filters, the authors of
[4] introduced a novel network architecture, the so-called
U-net. With this architecture they redefined the state-of-
the-art in 2D image segmentation till today. The U-net
provides a powerful 2D segmentation tool for biomedical
applications, since it has been demonstrated to learn
highly accurate ground truth masks from only very few
training samples.
Among others, the fully automated generation of vol-

umetric segmentation masks becomes increasingly impor-
tant for biomedical applications. This task still is chal-
lenging. One idea is to extend the U-net structure to
volumetric data by using 3D convolutions, as has been
proposed in [5], [6]. Essential drawbacks are the huge mem-
ory requirements and long training time. Deep learning
segmentation methods therefore are often applied to 2D
slice images (compare [5]). However, these slice images do
not contain information of the full 3D data which makes
the segmentation task much more challenging.

To address the drawbacks of existing approaches, we
introduce a network structure which is able to generate
accurate volumetric segmentation masks of very large 3D
volumes. The main idea is to integrate maximum intensity
projection (MIP) layers from different directions which
transform the data to 2D images containing information of
the full 3D image. As an example, we test the network for
segmenting blood vessels (arteries and veins) in magnetic
resonance angiography (MRA) scans (Figure I.1).

(a) Transversal. (b) Sagittal.

(c) Coronal. (d) 3D segmentation.

Figure I.1: In every plane (a)-(c) the blood vessels of
interest are marked in red. In (d) we see the corresponding
3D segmentation mask. The segmentation was conducted
with the freeware ITK-SNAP [7].

The proposed network can be trained 15× faster and
requires order of magnitude less memory than networks
with 3D convolutions, and still produces more accurate
results.



II. Background
A. Volumetric segmentation of blood vessels

We aim at generating volumetric binary segmentation
masks. In particular, as one targeted application, we aim
at segmenting blood vessels (arteries and veins) which
assists the doctor to detect abnormalities like stenosis or
aneurysms. Furthermore, the medical sector is looking for
a fully automated method to evaluate large cohorts in the
future. The Department of Neuroradiology Innsbruck has
provided volumetric MRA scans of 119 different patients.
The images face the arteries and veins between the brain
and the chest. Fortunately, also the volumetric segmenta-
tion masks (ground truths) of these 119 patients have been
provided. These segmentation masks have been generated
by hand which is long hard work (Figure I.1).

Our goal is the fully automated generation of the 3D
segmentation masks of the blood vessels. For that purpose
we use deep learning and neural networks. At the first
glance, this problem may seem to be quite easy because
we only have two labels (0: background, 1: blood vessel).
However, there are also arteries and veins which have label
0 which might confuse the network since we only want
to segment those vessels of interest. Other challenges are
caused by the big size of the volumes (96×288×224 voxels)
and by the very unbalanced distribution of the two labels
(in average, 99.76 % of all voxels indicate background).

B. Segmentation of MIP images
We first solve a 2D version of our problem. This can be

done by applying maximum intensity projections to the
3D data and the corresponding 3D ground truths. Using
a rotation angle of α = 36◦ around the vertical axis we
obtain 10 MIP images out of each patient, which results in
a data set to 1190 pairs of 2D images and corresponding 2D
segmentation masks. Data corresponding for one patient
are shown in Figure II.1.

Figure II.1: MIP images of a 3D MRA scan with α =
36◦. In the first row, we see the projections of the original
scan, in the second row the corresponding projections of
the ground truth.

The U-net used for binary segmentation is a mapping
U : Ra×b → [0, 1]a×b which takes an image as input and
outputs for each pixel the probability of being a foreground
pixel. It is formed by the following ingredients [4]:

• The contracting part: It includes stacking over convo-
lutional blocks (consisting of 2 convolutional layers)

and max-pooling layers considering following prop-
erties: (1) We only use 3 × 3 filters to hold down
complexity and zero-padding to guarantee that all
layer outputs have even spatial dimension. (2) Each
max-pooling layer has stride (2, 2) to half the spatial
sizes. We must be aware that the spatial dimensions
of the input can get divided by 2 often enough with-
out producing any rest. This can be done by slight
cropping. (3) After each pooling layer we use twice as
many filters as in the previous convolutional block.

• The upsampling part: To obtain similarity to the con-
tracting part, we make use of transposed convolutions
to double spatial dimension and to halve the number
of filters. They are followed by convolutional blocks
consisting of two convolutional layers with kernel size
3 × 3 after each upsampling layer (compare Figure
II.2).

Figure II.2: Visualization of the ground architecture of a
2D U-net.

Every convolutional layer in this structure gets followed
by a ReLu-activation-function. To link the contracting and
the upsampling part, concatenation layers are used, where
two images with same spatial dimension get concatenated
over their channel dimension (see Figure II.2). This en-
sures a combination of each pixel’s information with its
localization. At the end, the sigmoid-activation-function
is applied, which outputs for each pixel the probability for
being a foreground pixel. To get the final segmentation
mask, a threshold (usually 0.5) is applied point-wise to
the output of the U-net.
All networks in this paper are build with the Keras library
[8] using Tensorflow backend [9]. Our implemented 2D
U-net has filter size 32 at the beginning and filter size
512 at the end of the contracting part. The values of the
start weights are normally distributed with expectation
0 and deviation 1

fl
, where fl denotes the size of the l-th

convolutional layer. The network is trained with the Dice-



loss function [6]
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where � denotes pixelwise multiplication, the sums are
taken over all pixel locations, ŷ = f̂(x) are the prob-
abilities predicted by the U-net, and y is the related
ground truth. The Dice-loss function measures similarity
by comparing all correctly predicted vessels pixels with the
total number of vessels pixels in the prediction.

For i, j ∈ {0, 1} let us denote by pij the set of all pixels
of class i predicted to class j, and by ti the number of all
pixels belonging to class i. With this notation, we evaluate
the following metrics during training:

• Mean Accuracy:
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• Mean Intersection over Union [10]:
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• Dice-coefficient ([6], [11]):

DC ,
2p11

2p11 + p01 + p10
.

To guarantee that all samples have satisfying spatial
dimensions, the images get symmetrically cropped a little
bit. We also make use of batch normalization layers [12]
before each convolutional block to speed up convergence.
To handle overfitting [13], we also recommend the inte-
gration of dropout layers [14] with dropout rate 0.5 in
the deepest convolutional block and dropout rate 0.2 in
the second deepest blocks. For training, Adam-optimizer
[15] is used with learning rate 0.001 in combination with
learning-rate-scheduling, i.e. if the validation loss does not
decrease within 3 epochs the learning rate gets reduced
by the factor 0.5. Furthermore, if the network shows
no improvement for 5 epochs the training process gets
stopped (early stopping) and the weights of the best epoch
in terms of validation loss get restored. We use a (70, 15,
15) split in training, validation, and evaluation data and a
threshold of 0.5 for the construction of the segmentation
masks. Training the U-net on NVIDIA GeForce RTX 2080
GPU with a minibatch size of 6 yields the following results:
Dice-loss of 0.088, mean accuracy of 95.7%, mean IU of
91.6%, and Dice-coefficient of 91.3%. In average, training
the 2D U-net lasts 809 seconds, the application only 0.013
seconds. During training, the 2D U-net allocates a memory
space of 1.7 gigabytes.

C. Segmentation with the 3D U-net
Now we aim at generating binary segmentation masks

of sparse volumetric data using a 3D version of the prior
introduced U-net. The resulting 3D U-net follows the same
structure as in II-B, the only difference is the usage of

3D convolutions and 3D pooling layers. For the 3D U-
net we have to take special care about overfitting [13]
and about memory space. Therefore, for the 3D U-net
we have chosen filter size 4 at the beginning and filter
size 16 at the end of the contracting part. Also the use of
high dropout rates [14] (0.5 in the deepest convolutional
block and 0.4 in the second deepest blocks) is necessary to
ensure an efficient training process. Due to the huge size
of our training samples (96 × 288 × 224 voxels), we train
the network on batch, i.e. with minibatch size 1. During
training the 3D U-net allocates more than 8 gigabyte
memory space and therefore is not manageable any more
by our GPU. Therefore, the training process on a AMD
Ryzen 7 1700X eight-core processor takes in average 969
minutes. Since the number of 3D samples is only 119, we
conducted 5 training-runs with random choice of training,
validation and evaluation data. Using the 3D U-net we
obtained in average following results: Dice-loss of 0.254,
mean accuracy of 87.3%, mean IU of 80.5% and Dice-
coefficient of 74.8%.
Although the 3D U-net demonstrates high precision

in our application (see Figures III.4,III.5), we are not
satisfied with the long training time. In addition to it,
we are very limited in the choice of convolutional layers
and the corresponding number of filters due to the huge
size of the input data. So it is hardly possible to conduct
volumetric segmentation for even larger biomedical scans
without using cropping or sliding-window techniques.

III. Projection-Based 2.5D U-net
As mentioned in the introduction, the naive approach

for accelerating volumetric segmentation and reducing
memory requirements is to process each of the 96 slice
images independently through a 2D-network (compare
[5]). However, this causes the loss of connection between
the slice images. For our targeted application, applying
the 2D U-net out of II-B to each slice image of the 3D
MRA scans independently yields following disappointing
results: Dice-loss of 0.849, mean accuracy of 54.5%, mean
IU of 54.3%, and Dice-coefficient of 15.1%. Therefore we
are looking for an alternative approach.

A. Proposed 2.5D U-net architecture
As we have seen in II-B, the 2D U-net does very well on

the MIP images. Recall that a network for binary volumet-
ric segmentation is a function N : Ra×b×c → [0, 1]a×b×c

that maps the 3D scan to the probabilities that a voxel
corresponds to the desired class. For a 3D input x, the
proposed 2.5D U-net takes the form

N (x) = T ◦ Rp ◦ Fp ◦

U ◦Mα1(x)
...

U ◦Mαp
(x)

 , (III.1)

where
• Mi : Ra×b×c → Rb×c are MIP images for different

projection directions α1, . . . , αp,



• U : Rb×c → [0, 1]b×c is the same 2D U-net as in II-B
producing probabilities,

• Fp : ([0, 1]b×c)p → (Rb×c)p is a learnable filtration,
• Rp : (Rb×c)p → Ra×b×c is a reconstruction operator

using p linear backprojections as shown in Figure III.1,
• T : Ra×b×c → [0, 1]a×b×c is a fine-tuning opera-

tor (average pooling followed by a learnable shift-
operator followed by the sigmoid-activation-function).

The backprojection operator Rp causes a kind of shroud
(Figure III.2a), so we have to think about a filtrated
backprojection. Therefore, we apply a convolutional layer
Fp before backprojection. Using 1 × 3 filters, which get
adapted during training for each projection direction
α1, . . . , αp individually, leads to a more satisfying result
(Figure III.2b).

Figure III.1: Reconstruction operator R2: Voxel value
is defined as the sum over the corresponding 2D values,
here illustrated for 2 MIP images with directions {0◦, 90◦}.

Figure III.2a: Network’s out-
put (before threshold) with-
out filtration.

Figure III.2b: Network’s out-
put (before threshold) with
filtration.

For the fine-tuning operator T we use average pooling
with pool-size (2, 2, 2). This is followed by a learnable
shift-operator, which shifts the pooled data by an ad-
justed parameter since the decision boundaries have been
changed by Rp. This ensures, that the application of the
sigmoid function delivers accurate probabilities.
For our targeted application, again we only process one 3D
sample through the network per iteration (minibatch size
1). The start weights of the convolutional part U in III.1
are initialized in the same way as in II-B. The parameters
of Fp and T are initialized empirically.
For the amount of the projection directions we choose
equidistant angles Θ = {k × 180

p | k = 0, . . . , p − 1} to

ensure we obtain at most different information of the 3D
data for different projection directions. This causes the
task of finding the best value for p in III.1. Therefore we
trained the proposed network N for different values for
p and compared performance in terms of the evaluation
metrics (Figure III.3).

Figure III.3: Performance of the 2.5D U-net for different
number p of projection directions .

Looking at Figure III.3, we observe that Θ = {k× 180
12 |

k = 0, . . . , 11} seems to be a good choice for the amount of
projection directions. We have conducted 5 training runs
with random choice of training, validation and evaluation
data and obtained in average following results: Dice-loss
of 0.201, mean accuracy of 91.6 %, mean IU of 86.1 % and
Dice-coefficient of 83.7 %.

Figure III.4: Comparison between ground truth (first row),
segmentation generated by 3D U-net (second row) and
segmentation generated by 2.5D U-net (third row).

As we can see, for the volumetric segmentation of
MRA scans the proposed 2.5D U-net clearly outperforms
3D U-net in terms of evaluation metrics. Furthermore,
adjusting the weights of 2.5D U-net only takes in average
3914 seconds. With 11.37 seconds, the application time
increased due to the construction of the MIP images.
During training, the 2.5D U-net allocates a memory space
of 3.7 gigabytes.



Figure III.5: 3D segmentation mask generated by hand
(left), by 3D U-net (middle) and by 2.5D U-net (right).

Further tasks would be to investigate if applying data
augmentation techniques to the 3D samples increases ac-
curacy of the 3D U-net. Considering our application, data
deformation could cause problems due to the fact, that the
orientation of the vessels has huge impact to the network’s
prediction. We will investigate that in the future.

Table I: Summarization of the evaluation results for the
naive 2D U-net slice-per-slice approach, the 3D U-net and
the proposed 2.5D U-net.

Network loss MA in % IU in % DC in %
2D U-net 0.849 54.5 54.3 15.1
3D U-net 0.254 87.3 80.5 74.8

2.5D U-net 0.201 91.6 86.1 83.7

Table II: Summarization of time and storage observations
for the naive 2D U-net slice-per-slice approach, the 3D U-
net and the proposed 2.5D U-net..

Network Weights Train Appl. Mem.
2D U-net 8.6× 106 809 sec. 1.83 sec. 1.7 Gb
3D U-net 2.5× 104 58140 sec. 5.28 sec. > 8 Gb

2.5D U-net 8.6× 106 3914 sec. 11.37 sec. 3.7 Gb

IV. Conclusion
In this paper we proposed a new projection-based 2.5D

U-net structure for fast volumetric segmentation. The
construction of volumetric segmentation masks with the
help of a 3D U-net delivers very satisfying results, but the
long training time and the big need of memory space are
hardly sustainable. The 2.5D U-net using 12 deterministic
projection directions is able to conduct 3D segmentation
of very big biomedical 3D scans as reliable as the 3D U-net
and can be trained much faster without any concern about
memory space. For our targeted application, the 2.5D
U-net enables the generation of 3D segmentations in a
storage efficient way more accurate than other approaches
using 3D convolutions and can be trained almost 15×
faster. All numerical results considering the evaluation
metrics are displayed in Table I. Average training time, ap-
plication time and storage requirements for each network

are summarized in Table II. In the current implementa-
tion, we only use MIP images for deterministic projection
directions. In future work, we will investigate the use of
random projection directions for network training. This
could provide the possibility to use all available informa-
tion from each projection direction for the construction
of 3D segmentation masks. Also the conduction of com-
parative studies will be a future task with the aim to
research, if the 2.5D U-net also increases accuracy in other
applications compared to 3D convolutions.
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