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Abstract—This paper studies stable recovery of a
collection of point sources from its noisy M + 1 low-
frequency Fourier coefficients. We focus on the super-
resolution regime where the minimum separation of
the point sources is below 1/M . We propose a sepa-
rated clumps model where point sources are clustered
in far apart sets, and prove an accurate lower bound of
the Fourier matrix with nodes restricted to the source
locations. This estimate gives rise to a theoretical
analysis on the super-resolution limit of the MUSIC
algorithm.

I. INTRODUCTION

In imaging and signal processing, S point sources
are usually represented by a discrete measure:
µ(ω) =

∑S
j=1 xjδωj

(ω), where x = {xj}Sj=1 ∈
CS represents the source amplitudes and Ω =
{ωj}Sj=1 ⊆ T := [0, 1) represents the source
locations. A uniform array of M+1 sensors collects
the noisy Fourier coefficients of µ, denoted by
y ∈ CM+1. One can write

y = ΦMx+ η, (I.1)

where ΦM = ΦM (Ω) is the (M +1)×S Fourier or
Vandermonde matrix (with nodes on the unit circle):

ΦM (Ω) =


1 . . . 1

e−2πiω1 . . . e−2πiωS

...
...

...
e−2πiMω1 . . . e−2πiMωS

 ,
and η ∈ CM+1 represents noise.

Our goal is to accurately recover µ, especially
the support Ω, from y. The measurements y contains
information about µ at a coarse resolution of approx-
imately 1/M , whereas we would like to estimate
µ with a higher resolution. In the noiseless setting
where η = 0, the measure µ can be exactly re-
covered by many methods. With noise, the stability
of this inverse problem depends on Ω. A crucial

quantity is the minimum separation between the two
closest points in Ω, defined as

∆ = ∆(Ω) = min
1≤j<k≤S

|ωj − ωk|T,

where | · |T is the metric on the torus T. In imaging,
1/M is regarded as the standard resolution. As a
manifestation of the Heisenberg uncertainty princi-
ple, recovery is sensitive to noise whenever ∆ <
1/M , which case is referred as super-resolution.
The super-resolution factor (SRF) is M/∆, standing
for the maximum number of points in Ω that is
contained in an interval of length 1/M .

Prior mathematical work on super-resolution can
be placed in three main categories: (a) the min-max
error of super-resolution was studied in [1], [2] when
point sources are on a fine grid of R; (b) when Ω is
well-separated such that ∆ ≥ C/M for some con-
stant C > 1, some representative methods include
total variation minimization (TV-min) [3], [4], [5],
greedy algorithms [6], and subspace methods [7],
[8]. These results address the issue of discretization
error [6] arising in sparse recovery, but they do
not always succeed when ∆ < 1/M ; (c) when
∆ < 1/M , certain assumptions on the signs of µ are
required by many optimization-based methods [9],
[10], [11]. Alternatively, subspace methods exploit
a low-rank factorization of the data and can recover
complex measures, but there are many unanswered
questions related to its stability that we would like
to address.

This paper focuses on a highly celebrated sub-
space method, called MUltiple SIgnal Classification
(MUSIC) [12]. An important open problem is to
understand the super-resolution limit of MUSIC:
characterize the support sets Ω and noise level for
which MUSIC can stably recover all measures µ
supported in Ω within a prescribed accuracy. Prior



numerical experiments in [7] showed that MUSIC
can succeed even when ∆ < 1/M , but a rigorous
justification was not provided. This is one of our
main motivations for the theory presented in this
paper and in our more detailed preprint [13].

As a result of Wedin’s theorem [17], [18], the
stability of MUSIC obeys, in an informal manner,

Sensitivity ≤ Constant

xminσ2
min(ΦM )︸ ︷︷ ︸

Noise amplification factor

· Q(η)︸ ︷︷ ︸
Noise term

,

where xmin = minj |xj |, σmin(ΦM ) is the smallest
non-zero singular value of ΦM , and Q(η) is a
quantity depending on noise. Therefore, MUSIC can
accurately estimate µ provided that the noise term is
sufficiently small compared to the noise amplifica-
tion factor which depends crucially on σmin(ΦM ).

In the separated case ∆ > 1/M , accurate es-
timates for σmin(ΦM ) and σmax(ΦM ) are known
[14], [15], [8], [7]. In the super-resolution regime
∆ < 1/M , the value of σmin(ΦM ) is extremely sen-
sitive to the “geometry” or configuration of Ω, and a
more sophisticated description of the “geometry” of
Ω other than the minimum separation is required.
Based on this observation, we define a separated
clumps model where Ω consists of well-separated
subsets, where each subset contains several closely
spaced points. This situation occurs naturally in
applications where point sources clustered in far
apart sets.

Under this separated clumps model, we provide a
lower bound of σmin(ΦM ) with the dominant term
scaling like SRF−λ+1, where λ is the cardinality
of the largest clump. This is a significant improve-
ment on existing lower bounds with continuous
measurements where the exponents depend on the
total sparsity S [1], [2]. We use this estimate to
rigorously establish the resolution limit of MUSIC
and explain numerical results. More comprehensive
explanations, comparisons, simulations, and proofs
can be found in [13].

II. MINIMUM SINGULAR VALUE OF
VANDERMONDE MATRICES

We first define a geometric model of Ω where the
point sources are clustered into far apart clumps.

Assumption 1 (Separated clumps model). Let M
and A be a positive integers and Ω ⊆ T have
cardinality S. We say that Ω consists of A separated
clumps with parameters (M,S, α, β) if the follow-
ing hold.

1) Ω can be written as the union of A disjoint sets
{Λa}Aa=1, where each clump Λa is contained in
an interval of length 1/M .

2) ∆ ≥ α/M with max1≤a≤A(λa − 1) < 1/α
where λa is the cardinality of Λa.

3) If A > 1, then the distance between any two
clumps is at least β/M .

There are many types of discrete sets that con-
sist of separated clumps. Extreme examples include
when Ω is a single clump containing all S points,
and when Ω consists of S clumps containing a single
point. While our theory applies to both extremes, the
in-between case where Ω consists of several clumps
each of modest size is the most interesting, and
developing a theory of super-resolution for this case
has turned out to be quite challenging.

Under this separated clumps model, we expect
σmin(ΦM ) to be an `2 aggregate of A terms, where
each term only depends on the “geometry” of each
clump.

Theorem 1. Let M ≥ S2. Assume Ω satisfies
Assumption 1 with parameters (M,S, α, β) for some
α > 0 and

β ≥ max
1≤a≤A

20S1/2λ
5/2
a

α1/2
. (II.1)

Then there exist explicit constants Ca > 0 such that

σmin(ΦM ) ≥
√
M
( A∑
a=1

(
Caα

−λa+1
)2)− 1

2

. (II.2)

The main feature of this theorem is the exponent
on SRF = 1/α, which depends on the cardinality
of each clump as opposed to the total number of
points. Let λ be the cardinality of the largest clump:
λ = maxAa=1 λa. Theorem 1 implies

σmin(ΦM ) ≥ C
√
M SRF−λ+1. (II.3)

Previous results [1], [2] strongly suggest (we avoid
using “imply” because they studied a similar inverse
problem but with continuous, rather than discrete
measurements like the ones considered here) that

σmin(ΦM ) ≥ C
√
M SRF−S+1. (II.4)

By comparing the inequalities (II.3) and (II.4), we
see that our lower bound is dramatically better when
all of the point sources are not located within a sin-
gle clump. These results are also consistent with our
intuition that σmin(ΦM ) is smallest when Ω consists
of S closely spaced points; more details about this



can be found in [13]. In [16], a lower bound of
σmin(ΦM ) is derived for a model called clustered
nodes; a detail comparison between Theorem 1 and
results in [16] can be found in [13].

The following theorem provides an upper bound
on σmin(ΦM ) when Ω contains λ consecutive points
spaced by α/M , and this shows that the dependence
on SRF in inequality (II.3) is optimal.

Theorem 2. Let λ ≤ S ≤ M − 1, and there exists
a constant c > 0 depending only on λ such that the
following hold: for any 0 < α ≤ c(M + 1)−1/2,
ω ∈ T and Ω ⊆ T of cardinality S that contains
the set ω + {0, α/M, . . . , (λ− 1)α/M}, we have
σmin(ΦM ) ≤ Cλαλ−1.

III. MUSIC AND ITS SUPER-RESOLUTION LIMIT

In signal processing, the MUSIC algorithm [12],
has been widely used due to its superior numeri-
cal performance among subspace methods. MUSIC
relies upon the Vandermonde decomposition of a
Hankel matrix, and its stability to noise can be
formulated as a matrix perturbation problem.

Throughout the following exposition, we assume
that L is an integer satisfying the inequalities S ≤
L ≤M + 1− S. The Hankel matrix of y is

H(y) =

y0 y1 . . . yM−L
...

...
. . .

...
yL yL+1 . . . yM

 .
If we denote the noiseless measurement vector by
y0 = ΦM (Ω)x, then it is straightforward to verify
that we have the following Vandermonde decompo-
sition

H(y0) = ΦLdiag(x1, . . . , xS)ΦTM−L.

Observe that both ΦL and ΦM−L have full column
rank when S ≤ L ≤M +1−S and that H(y0) has
rank S. The Singular Value Decomposition (SVD)
of H(y0) is of the form

H(y0) = [U W ] diag(σ1, . . . , σS , 0, . . . , 0)V ∗,

where σ1 ≥ . . . ≥ σS are the non-zero singular
values of H(y0). The columns of U ∈ C(L+1)×S

and W ∈ C(L+1)×(L+1−S) span Range(H(y0)) and
Range(H(y0))⊥ respectively, which are called the
signal space and the noise space.

For any ω ∈ T and positive integer L, we define
the steering vector of length L+ 1 to be

φL(ω) = [1 e−2πiω e−2πi2ω . . . e−2πiLω]T .

Algorithm 1 MUltiple SIgnal Classification

Input: y ∈ CM+1, sparsity S, L.
1: Form Hankel matrix H(y) ∈ C(L+1)×(M−L+1)

2: Compute the SVD of H(y):

H(y) = [Û Ŵ ]diag(σ̂1, . . . , σ̂S , σ̂S+1, . . .)V̂
∗,

where Û ∈ C(L+1)×S , Ŵ ∈ C(L+1)×(L+1−S).
3: Compute the imaging function Ĵ (ω) =

‖φL(ω)‖2/‖Ŵ ∗φL(ω)‖2, ω ∈ [0, 1).

Output: Ω̂ = {ω̂j}Sj=1 corresponding to the S

largest local maxima of Ĵ .

MUSIC is based on the following observation that

ω ∈ Ω iff φL(ω) ∈ Range(H(y0)) = Range(U).

Table I: Functions in the MUSIC algorithm

Noise-space correlation function Imaging function

Noiseless R(ω) = ‖W∗φL(ω)‖2
‖φL(ω)‖2 J (ω) = 1

R(ω)

Noisy R̂(ω) = ‖Ŵ∗φL(ω)‖2
‖φL(ω)‖2 Ĵ (ω) = 1

R̂(ω)

This observation can be reformulated in terms
of the noise-space correlation function R(ω) and
the imaging function J (ω) (see Table I for their
definitions), as summarized in the following lemma.

Lemma 1. Let S ≤ L ≤M + 1− S. Then

ω ∈ {ωj}Sj=1 ⇐⇒ R(ω) = 0⇐⇒ J (ω) =∞.

To summarize this discussion: in the noiseless
case where we have access to y0, the source lo-
cations can be exactly identified through the zeros
of the noise-space correlation function R(ω) or the
peaks of the imaging function J (ω).

In the presence of noise, we only have access to
H(y), which is a perturbation of H(y0):

H(y) = H(y0) +H(η).

The noise-space correlation and imaging functions
are perturbed to R̂(ω) and Ĵ (ω) respectively. Sta-
bility of MUSIC depends on the perturbation of the
noise-space correlation function fromR(ω) to R̂(ω)
which we measure by

‖R̂ − R‖∞ := max
ω∈[0,1)

|R̂(ω)−R(ω)|.

By using Wedin’s theorem [17], [18, Theorem 3.4],
we can prove the following perturbation bound.



Proposition 1. Let S ≤ L ≤ M + 1 − S. Suppose
2‖H(η)‖2 < xminσmin(ΦL)σmin(ΦM−L). Then

‖R̂ − R‖∞ ≤
2‖H(η)‖2

xminσmin(ΦL)σmin(ΦM−L)
.

If η is independent Gaussian noise, i.e., η ∼
N (0, σ2I), the spectral norm of H(η) satisfies the
following concentration inequality [19, Theorem 4]:

Lemma 2. If η ∼ N (0, σ2I), then

E‖H(η)‖2 ≤ σ
√

2C(M,L) log(M + 2),

P {‖H(η)‖2 ≥ t} ≤ (M + 2) exp

(
− t2

2σ2C(M,L)

)
,

for t > 0, and C(M,L) = max(L+ 1,M −L+ 1).

Combining Proposition 1, Lemma 2 and Theorem
1 gives rise to a stability analysis of MUSIC:

Theorem 3. Let M be an even integer satisfying
M ≥ 2S2 and set L = M/2. Fix parameters ε > 0,
ν > 1, and let η ∼ N (0, σ2I). Assume Ω satisfies
Assumption 1 with parameters (L, S, α, β) for some
α > 0 and β satisfying (II.1). There exist explicit
constants ca > 0 such that if

σ

xmin
< C(M,ν)

( A∑
a=1

c2aα
−2(λa−1)

)−1
ε,

C(M,ν) =
M

32
√
ν(M + 2) log(M + 2)

,

then with probability no less than 1−(M+2)−(ν−1),

‖R̂ − R‖∞ ≤ ε.

In order to guarantee an ε-perturbation of the
noise-space correlation function, the noise-to-signal
ratio should follow the scaling law

σ

xmin
∝

√
M

logM

(
A∑
a=1

c2aα
−2(λa−1)

)−1
ε.

Let λ be the cardinality of the largest clump. By
(II.3), this scaling law reduces to

σ

xmin
∝

√
M

logM
α2λ−2ε =

√
M

logM
SRF−(2λ−2)ε.

The resolution limit of MUSIC is exponential in
SRF, but the exponent only depends on the car-
dinality of the separated clumps instead of the total
sparsity S. These estimates are verified by numerical
experiments in [13].
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