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Abstract—We propose a sparse reconstruction frame-
work for solving inverse problems. Opposed to exist-
ing sparse regularization techniques that are based on
frame representations, we train an encoder-decoder
network by including an `1-penalty. We demonstrate
that the trained decoder network allows sparse signal
reconstruction using thresholded encoded coefficients
without losing much quality of the original image. Using
the sparse synthesis prior, we propose minimizing the
`1-Tikhonov functional, which is the sum of a data fit-
ting term and the `1-norm of the synthesis coefficients,
and show that it provides a regularization method.

I. Introduction
Various applications in medical imaging, remote sensing

and elsewhere require solving an inverse problems of the
form

y = Ax+ z , (I.1)

where A : X → Y is a linear operator between Hilbert
spaces X, Y, and z is the data distortion. Inverse prob-
lems are well analyzed and several established approaches
for its solution exist, including filter-based methods or
variational regularization [1], [2]. In the very recent years,
neural networks (NNs) and deep learning appeared as new
paradigms for solving inverse problems, and demonstrate
impressive performance. Several approaches have been de-
veloped, including two-step [3]–[5], variational [6], iterative
[7], [8] and regularizing networks [9].

Standard deep learning approaches may lack data con-
sistency for unknowns very different from the training
images. To address this issue, in [10] a deep learning
approach has been introduced where minimizers

xα ∈ arg min
x

‖A(x)− y‖2Y + αφ(Ψ(x)) (I.2)

are investigated. Here Ψ : X → Ξ is a trained NN, Ξ a
Hilbert space, φ : Ξ → [0,∞], α > 0 a regularization
parameter and A : X → Y. The resulting reconstruction
approach has been named NETT (for network Tikhonov
regularization), as it is a generalized form of Tikhonov reg-
ularization using a NN as trained regularizer. For a related
approach see [11]. In [10] it is shown that under reasonable

conditions, the NETT yields a convergent regularization
method.
In this paper, we introduce a novel deep learning ap-

proach for inverse problems that is somehow dual to (I.2).
We define approximate solutions of (I.1) as xµ = Φ(ξµ),
where

ξµ ∈ arg min
ξ

‖AΦ(ξ)− y‖2Y + µφ(ξ) . (I.3)

Here Φ : Ξ → X is a trained network, φ : Ξ → [0,∞] a
penalty functional and µ > 0 a regularization parameter.
The NETT functional in (I.2) uses an analysis approach
where the analysis coefficients Ψ(xα) are regular with
regularity measured in smallness of φ. Opposed to that,
(I.3) assumes regularity of the synthesis coefficients ξµ and
is therefore a synthesis version of NETT.

In particular, we investigate the case where Ξ = `2(Λ)
for some index set Λ and φ is a weighted `1-norm used
as a sparsity prior. To construct an appropriate network,
we train a (modified) tight frame U-net [12] of the form
Φ ◦Ψ using an `1-penalty, and take the decoder part as
synthesis network. We show numerically that the decoder
Φ allows to reconstruct the signal using sparse represen-
tations. Note that we train the network independent of
any measurement-operator. As in [7] this allows one to
solve any inverse problem with the same (or similar) prior
assumptions in the same way without having to retrain
the network. As the main theoretical result, in this paper
we show that (I.3) is a convergent regularization method.
Performing numerical reconstructions and comparing (I.3)
with existing approaches for solving inverse problems is
subject of future research.

II. Preliminaries
In this section, we give some theoretical background of

inverse problems. Moreover, we describe the tight frame
U-net that will be used for the trained regularizer.

A. Regularization of inverse problem
The characteristic property of inverse problems is its

ill-posedness, which means that the solution of Ax = y
is not unique or highly unstable with respect to data



perturbations. In order to make the signal reconstruction
process stable and accurate, regularization methods have
to be applied, which use a-priori knowledge about the true
unknown in order to construct estimates from data (I.1)
that are close to the true solution.

Variational regularization is one of the most established
methods for solving inverse problems. These methods
incorporate prior knowledge by choosing solutions with
small value of a regularization functional. In the synthesis
approach, this amounts solving (I.3), where Φ : Ξ → X
is a prescribed synthesis operator. The minimizers of (I.3)
are designed to approximate φ-minimizing solutions of the
equation AΦ(ξ) = y, defined by{

min φ(ξ)
s.t. AΦ(ξ) = y .

(II.1)

A frequently chosen regularizer is a weighted `1-norm,
which has been proven to be useful for solving compressed
sensing and other inverse problems [13]–[15]. This is the
form for the regularizer we will be using in this paper.

The synthesis approach is commonly used with Φ(ξ) =∑
λ∈Λ ξλuλ being the synthesis operator of a frame (uλ)λ

of X, such as a wavelet or curvelet frame or a trained
dictionary [16]–[19]. In this case, AΦ is linear, which
allows the application of the standard sparse recovery
theory [2], [14]. Opposed to that, in this paper we take
the synthesis operator as a trained network in which case
AΦ is non-linear. In particular, we take the synthesis
operator as decoder part of an encoder-decoder network
that is trained to satisfy Φ(Ψ(x)) ' x. As encoder-decoder
network we use the tight frame U-net [12] which is a
modification of the U-net [20] with improved reproducing
capabilities.

B. Tight frame U-net
We consider the case of 2D images and denote by X0 =

Rn0×c0 the space at the coarsest resolution of the signal
with size n0 and c0 channels. The tight frame U-net uses a
hierarchical multi-scale representation defined recursively
by

N`+1 = G` ◦




Hh ◦Hᵀ
h

Hd ◦Hᵀ
d

Hv ◦Hᵀ
v

L ◦ N` ◦ Lᵀ

 ◦ F`, id

 , (II.2)

for ` ∈ N and with N0 = id. Here F` : Rn`×c` → Rn`×d`

and G` : Rn`×d` → : Rn`×c` are convolutional layers fol-
lowed by a non-linearity and id is the identity used for the
bypass-connection. Hh,Hv,Hd are horizontal, vertical and
diagonal high-pass filters and L is a low-pass filter such
that the tight frame property

HhHᵀ
h + HvHᵀ

v + HdHᵀ
d + LLᵀ = c · id (II.3)

is satisfied for some c > 0. We define the filters by
applying the tensor products HHᵀ, HLᵀ, LHᵀ and LLᵀ of

the Haar wavelet low-pass L = 2−1/2 [1, 1]ᵀ and high-pass
H = 2−1/2 [1,−1]ᵀ filters separately in each channel.
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Figure II.1: Tight frame U-net architecture. We start
by convolving the input and applying batch normalization.
Then each channel is filtered using the wavelet filters, and
the L output is recursively used as input for the next
layer. After the downsampling to the coarsest resolution,
we upsample by applying the transposed wavelet filters.
Next we concatenate the layers and use deconvolution and
batch normalization to obtain the output.

The architecture of the tight frame U-net is shown in
Figure II.1. It uses standard learned convolution, batch-
normalization and the fixed wavelet filters Hh,Hv,Hd,L
for downsampling and upsampling. To improve flexibility
of the network we include an additional learned deconvolu-
tion layer after the upsampling. After every convolutional
layer the ReLU activation function is applied. Similarly,
we define a tight frame U-net without bypass-connection,

N`+1 = G` ◦




Hh ◦Hᵀ
h

Hd ◦Hᵀ
d

Hv ◦Hᵀ
v

L ◦ N` ◦ Lᵀ

 ◦ F`

 , (II.4)

for ` ∈ N and with N0 = id. Here F` : Rn`×c` → Rn`×d` ,
G` : Rn`×d` → : Rn`×c` are convolutional layers followed
by a nonlinearity, and Hh,Hv,Hd, L are the wavelet filters
as described above. In the rest of the paper we will refer
to the network defined in (II.2) as tight frame U-net with
bypass-connection, and the network defined in (II.4) as
tight frame U-net without bypass-connection.

The tight frame property (II.3) allows the networks
(II.2) and (II.4) to both have the perfect recovery con-
dition which means that filters F`,G` can be chosen such
that any signal x ∈ X can be perfectly recovered from its
frame coefficients if they are given in all layers [12]. In the
following we will refer to the results after convolving an
image x` ∈ X` = Rn`×c` with the fixed wavelet filters as
filtered version of x`.

III. Nonlinear sparse synthesis regularization
To solve the inverse problem (I.1), we use the sparse

synthesis NETT which considers minimizers of

Sµ,y(ξ) , ‖AΦ(ξ)− y‖2Y + µ
∑
λ∈Λ

wλ|ξλ| . (III.1)

Here Φ : `2(Λ) → X is the synthesis operator, Λ an index
set and wλ are positive parameters.



A. Theoretical analysis
The sparse synthesis NETT can be seen as weighted `1-

regularization for the coefficient inverse problem AΦ(ξ) =
y. For its theoretical analysis we require the following
(A1) A : X→ Y is bounded linear;
(A2) Φ : `2(Λ)→ X is weakly continuous;
(A3) wmin , inf{wλ | λ ∈ Λ} > 0.
We then have the following result:

Theorem III.1 (Well-posedness). Under assumptions
(A1)-(A3) the following holds:
• Existence: For all y ∈ Y , µ > 0, the functional in
(III.1) has a minimizer

• Stability: Suppose yk → y and ξk ∈ arg minSµ,yk
.

Then weak accumulation points of (ξk)k∈N exist and
are minimizers of Sµ,y.

Proof. According to (A1), (A2), the operator AΦ is
weakly continuous. Therefore, the results are a direct
consequence of [2, Theorem 3.48].

From [2, Theorem 3.48, Theorem 3.49] we can further
deduce convergence (as the noise level goes to zero) of
the sparse synthesis NETT. Later we take Φ as decoder
part of a tight frame U-net trained as an auto-encoder,
which we expect to be weakly continuous and Lipschitz
continuous. In this case, we have stability and convergence
for the actual reconstruction Φ(ξµ).

B. A trained sparse regularizer
Using a similar architecture to the one suggested in

[12], we train a model for sparse regularization. To enforce
sparsity in the encoded domain we will use a combination
of mean-squared-error and an `1-penalty of the filtered
coefficients as loss-function for training purposes. The
idea is to enforce the sparsity in the high-pass filtered
images. To achieve this, we will regularize these images
in the encoded domain using a regularization parameter
depending on the layer.

We write the tight frame U-net defined by (II.2) in the
form Φη ◦Ψθ where Ψθ is the encoder and Φη the decoder
part. Moreover, we denote by Ψ`

θ;a(x) for a ∈ {h, v, d}
the high-pass filter coefficients of x ∈ X in the `th layer.
Given training data x1, . . . , xN , the loss-function used for
network training is taken as

E(θ, η) = 1
N

N∑
i=1
‖Φη ◦Ψθ(xi)− xi‖22

+ µ

N

N∑
i=1

∑
`∈N

∑
a∈{h,v,d}

w`‖Ψ`
θ;a(xi)‖1 . (III.2)

The first term of the loss-function is supposed to enforce
the network to reproduce the training images. Following
the sparse regularization strategy, the second term forces
the network to learn convolutions such that high-pass
filtered coefficients are sparse.

IV. Numerical experiments
The above sparse encoding strategy has been tested

with the two network architectures described in (II.2) and
(II.4). Both networks are tested for their reconstruction
capabilities when setting parts of the frame coefficients to
zero. Actual application to the solution of tomographic
inverse problems is subject of future research.
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Figure IV.1: Test phantom and influence of the
bypass connection. Top left: original image. Top right:
reconstructed image using the network with bypass-
connection and setting the bypass-coefficients to 0. The
first number depicted in the right image is the image
distance described in (IV) and the second one is the SSIM.

A. Implementation details
For the numerical experiments, we generated 256× 256

grayscale images which contain an ellipse, a rectangle and
a star-like shape. Each of the shapes parameter has been
chosen randomly. The training dataset consists of 1500
and the validation dataset of 500 such images. One of the
phantoms from the training set is shown in Figure IV.1
(top left). The top right image shows the reconstruction
using the tight frame U-net trained with the bypass-
connection after setting the bypass-coefficients to zero.
The large difference between these two images shows
that the bypass-connection significantly contributes to the
image representation and reconstruction. Since the wavelet
filters have not been applied to the bypass-connection,
one cannot expect sparsity for this part. This is actually
the reason why we expect the tight frame U-net without
bypass-connection to allow much sparser approximation
than the tight frame U-net with bypass-connection. This
conjecture is supported by the numerical results presented
below.
Each of the networks has 3 downsampling- and

upsampling-layers and starts with 8 channels for the first
convolution. The number of channels is then doubled in
each consequent layer. For minimizing the loss-function
E(θ, η) w.r.t θ and η we use the Adam [21] algorithm with
the suggested parameters and train each network for 60
epochs. For the experiments we chose the regularization
parameters µ = 10−9.5 · N where N is the number of
trainings-samples and w` = 2−`. The training was done
using an Intel Xeon CPU E331225 @3.10 GHz processor



and 16 GB RAM. Each epoch (including the evaluation on
the validation set) took about 30 min for the tight frame
U-net with bypass-connection and about 20 min minutes
for the tight frame U-net without bypass-connection. This
results in a training-time of 30 h and 20 h, respectively.
Note that the training time could be reduced significantly
by using GPUs for less than 1000e instead of the CPU.
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Figure IV.2: Sparse recovery results. Top: passing
the image through the tight frame U-net with bypass-
connection (left) and corresponding reconstruction after
setting 85 % of the coefficients to 0 (right). Bottom:
passing the image through the tight frame U-net without
bypass-connection (left) and corresponding reconstruction
after setting 85 % of the coefficients to 0 (right).

B. Sparse approximation results
Each of the two tight frame U-nets has been tested on

its ability to reconstruct the image from a sparse approxi-
mation in the encoded domain. To this end, we calculated
the frame coefficients of the test image using the encoder
part of the network, and set a certain fraction p ∈ [0, 1]
of the coefficients in each channel with smallest absolute
value to 0. The decoder is then applied to the thresholded
coefficients to get a sparse approximation of the original
image. In Figure IV.2, example reconstructions using all
coefficients (left) and thresholded coefficients with a value
of p = 0.85 (right) are shown. We observe that both
tight frame U-net variants yield almost perfect recovery
when using the original coefficients. However, as expected,
when applied to the thresholded coefficients, the network
without bypass-connection (bottom) yields significantly
better results.

To quantitatively evaluate the reconstructed images,
we compute the structural similarity index (SSIM), the

peak-signal-to-noise-ratio (PSNR) and the image distance
(ID), defined by IDε(x, x̂) = 1

n

∑n
i=1 1[0,ε](|xi − x̂i|) with

ε = 1/256, meaning that entries differing by less than
one pixel are considered equal. To evaluate the sparse
approximation capabilities of the two models we calculate
ratios of the evaluation metrics between the reconstruc-
tions with the thresholded and the original coefficients,
respectively. In these evaluation metrics, a high (close to
1) ratio indicates good performance.
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Figure IV.3: Ratios of ID, SSIM and PSNR scores
depending on the thresholding level. Top: Network
with bypass-connection. Bottom: Network without bypass-
connection. Because of the inherent sparsity of the image,
we decided to only measure the quality of the reconstruc-
tion for a thresholding level of p ≥ 0.5.

C. Discussion
The reconstruction results in Figure IV.2 show the

sparse approximation results using the tight frame U-
net with and without bypass-connection. The network
with bypass-connection is able to almost perfectly recover
the image from all frame coefficients (top left). How-
ever, when thresholding 85 % of the coefficients, this is
no longer the case (top right). The bottom left image
shows the image passed through the network without
bypass-connection. Comparing this to the pass through the
network with bypass-connection we see that the network
without bypass-connection, when using all coefficients,



performs slightly worse. However, when thresholding 85 %
of the coefficients obtained by passing the image through
the encoder part, the network without bypass-connection
significantly outperforms the one with bypass-connection.

To further investigate this issue, we sample images
from the validation set and plot the mean of the ratios
of the metric scores when setting various percentages of
coefficients to zero (Figure IV.3). As a base for this we take
the metric scores obtained by passing the images through
the network. Because of the inherent sparsity of the images
we chose to plot these metrics only for p ≥ 0.5. When
comparing the two plots in Figure IV.3 we see that the
network without bypass-connection can almost maintain
the metric scores up to some point at p ' 0.85, whereas
the network with bypass-connection falls off right at the
beginning and tends to perform worse than the network
without bypass-connection.

V. Conclusion

In this paper we proposed a sparse regularization strat-
egy using a neural network as synthesis operator. The
network is used as a nonlinear transformation between
the image space and a coefficient space used for signal
representation. In particular, we used an encoder-decoder
pair of a tight frame U-Net trained with an `1-penalty for
signal representation in the coefficient space. To numer-
ically investigate the sparse approximation capabilities,
we set some of the encoded coefficients to zero before
applying the decoder. Our numerical results suggests that
the tight frame U-net without bypass-connection enables
sparse recovery. Actual implementation of our approach
to tomographic inverse problems and detailed comparison
with other established reconstruction methods is subject
of future research. We point out that the learned part of
our proposed regularization approach only depends on the
class of images to be (re-)constructed which allows us to
apply the same network to any inverse problem targeting
a similar class of phantoms, without having to retrain the
network.
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