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Stéphane Chrétien
National Physical Laboratory

London, UK
stephane.chretien@npl.co.uk

Andrew Thompson
National Physical Laboratory

London, UK
andrew.thompson@npl.co.uk

Bogdan Toader
University of Oxford

Oxford, UK
toader@maths.ox.ac.uk

Abstract—We study the problem of super-resolution, where
we recover the locations and weights of non-negative point
sources from a few samples of their convolution with a Gaussian
kernel. It has been recently shown that exact recovery is possible
by minimising the total variation norm of the measure. An
alternative practical approach is to solve its dual. In this paper, we
study the stability of solutions with respect to the solutions to the
dual problem. In particular, we establish a relationship between
perturbations in the dual variable and the primal variables
around the optimiser. This is achieved by applying a quantitative
version of the implicit function theorem in a non-trivial way.

Index Terms—super-resolution, perturbation analysis

I. PROBLEM SETUP

In the study of non-negative super-resolution, we want to
estimate a signal x which consists of a number of point sources
with unknown locations and non-negative magnitudes, from
only a few measurements of the convolution of x with a
known kernel φ. This is a problem that arises in a number
of applications, for example fluorescence microscopy [8], as-
tronomy [9] and ultrasound imaging [10]. In such applications,
the measurement device has limited resolution and cannot
distinguish between distinct point sources in the input signal
x. This is often modelled as a deconvolution problem with a
Gaussian kernel.

Specifically, let x be a non-negative measure on I = [0, 1]
consisting of K unknown non-negative point sources:

x =

K∑
k=1

akδtk ,

with ak > 0, for all k = 1, . . . ,K, and let y ∈ RM be the
vector of measurements obtained by sampling the convolution
of x with a known kernel φ (e.g. a Gaussian) at locations sj :

yj =

∫
I

φ(t− sj)x(dt),

for all j = 1, . . . ,M . Note that, because x is a discrete
measure, each entry in y is of the form:

yj =

K∑
k=1

akφ(tk − sj),
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for all j = 1, . . . ,M . Let Φ(t) = [φ(t−s1), . . . , φ(t−sM )]T ,
then x can be recovered by solving the following program: 1

min
x̂≥0

∫
I

x̂(dt) subject to y =

∫
I

Φ(t)x̂(dt). (1)

The problem of super-resolution has been studied extensively
in the literature since the seminal paper [1], which addressed
the case of complex amplitudes. In [2], the authors showed that
when the coefficients ak, k = 1, . . . ,K are positive, which
corresponds to the present setting, exact recovery is possible
without separation of sources.

The dual of problem (1) is

max
λ∈RM

yTλ subject to
M∑
j=1

λjφ(t−sj) ≤ 1, ∀t ∈ I. (2)

The dual problem (2) is a finite-dimensional problem with
infinitely many constraints, known as a semi-infinite program.
Such problems can be solved using a number of algorithms
including exchange methods [7] and sequential quadratic pro-
gramming [6]. The advantage over algorithms that solve the
primal problem (for example the ADCG algorithm [3]) is
working in a finite dimensional space, which simplifies the
analysis.

Consider a solution λ∗ of the dual problem (2) which
corresponds to a dual certificate, namely a function

q(s) =

M∑
j=1

λ∗jφ(s− sj), (3)

which satisfies the conditions:

q(ti) = 1, ∀i = 1, . . . ,K, (4)
q(s) < 1, ∀s 6= ti, ∀i = 1, . . . ,K. (5)

Then the local maximisers of q(s) correspond to the source
locations {tk}Kk=1 and the amplitudes {ak}Kk=1 are found by
solving a linear system.

In this paper, we analyse how small perturbations of λ∗

affect the local maximisers of q(s) in the case when the con-
volution kernel is Gaussian φ(t) = e−t

2/σ2

. The outcome is a
bound on how far the estimated locations tk and magnitudes

1We assume that the measurements are exact. We treat the case when the
measurements are noisy in the journal version of this paper.



ak are from their true values obtained for exact λ∗. This gives
us an insight into the size of the error in the locations and
magnitudes when we apply an optimisation algorithm to the
dual of the super-resolution problem.

II. BOUND ON THE ERROR AS λ IS PERTURBED

In this section we present our main results, namely two
theorems that give bounds on the perturbations around the
source locations tk and the magnitudes ak respectively, as the
dual variable is perturbed away from the optimiser λ∗, when
the convolution kernel is a Gaussian with known width σ:
φ(t) = e−t

2/σ2

.
Theorem 1: (Dependence of t on λ) Let λ∗ ∈ RM

be a solution of the dual program (2) with φ Gaussian as
given above such that the dual certificate q(s) defined in
(3) satisfies conditions (4) and (5), λ a perturbation of λ∗

in a ball of radius δλ and t an arbitrary local maximiser
of qλ(s) =

∑M
j=1 λjφ(s − sj) so that for λ = λ∗, the

corresponding local maximiser t∗ is a source location of x.
Then

|t− t∗| ≤ Ct∗‖λ− λ∗‖2,

provided that

δλ ≤
|q′′(t∗)|2σ3

√
e

4
√

2 (2 + cR)M
,

where

Ct∗ =
1

4 + cR

[
1 +

2
√

2M(2 + cR)

|q′′(t∗)|
√
e

]
, (6)

R =
‖λ∗‖2
σ

, (7)

and c ≈ 3.9036 is a universal constant.
One of the main conclusions which can be drawn from this

result is that the primal spike location error is controlled in
l∞, but degrades as a function of the number of measurements
in the order of

√
M . Of crucial importance is the curvature

of the dual certificate at the true solution: the flatter the
certificate, the worse the estimation error. Our theorem also
gives important information about the accuracy in the dual
variable required to guarantee our upper bound on the error
of recovery. This accuracy is of the inverse order of the
number of measurements, which is quite a stringent constraint.
Both the M and the

√
M factors are a consequence of the

way we bound sums of shifted copies of the kernel, namely∑M
j=1 φ(t−sj) ≤M maxt∈R φ(t). Given the fast decay of the

Gaussian, it is clear that this is not a tight bound. However,
any bound would reflect the density of samples close to each
source location.

We will now give a result regarding the perturbation of the
magnitudes ak when λ∗ is perturbed. Let Φ be the matrix
whose entries are defined as

Φij = φ(tj − si), (8)

and t∗ and a∗ the vectors of true source locations and weights:

t∗ = [t1, . . . , tK ]T , a∗ = [a1, . . . , aK ]T .

When we solve (2) exactly, we obtain the source locations
by finding the local maximisers of q(s). Then the vector of
weights a∗ is found by solving the system

Φa = y.

When the source locations are perturbed, we denote the
resulting perturbed data matrix by:

Φ̃ = Φ + E, (9)

and we calculate the vector of perturbed weights ã as the
solution of the least squares problem

min
a
‖Φ̃a− y‖2. (10)

The following theorem gives us a bound on the difference
‖a∗ − ã‖2 between the vector of true weights a∗ and the
vector of weights ã obtained by solving the least squares
problem (10) with the perturbed matrix Φ̃, as a function of the
difference ‖t̃− t∗‖2 between the perturbed source locations t̃
and the true source locations t∗.

Theorem 2: (Dependence of a on t) Let t∗ ∈ [0, 1]K be the
vector of true source locations and t̃ ∈ [0, 1]K the perturbed
source locations, such that:

‖t∗ − t̃‖2 <
σ2σmax(Φ)

4e4/σ2
√
M

√1 +
σ2

min(Φ)

σ2
max(Φ)

− 1

 . (11)

Then the error between the true weights a∗ and the perturbed
weights ã obtained by solving program (10) is bounded by:

‖a∗ − ã‖2 ≤
4e

4
σ2
√
M‖a∗‖2

σ2σmin(Φ)
‖t̃− t∗‖2 +O(‖t̃− t∗‖22).

III. PROOFS

In this section we present the proofs of the two theorems.
Due to space limitations, we skip some details, which will be
present in the journal version of the paper.

A. Proof of Theorem 1

Let t∗ be an arbitrary local maximiser of the function q(t) in
(3), so t∗ is also a source location, and λ∗ the solution to (2).
The key step in this proof is applying a quantitative version
of the Implicit Function Theorem [11] to the function:

F (t, λ) =

M∑
j=1

λjφ
′(t− sj), (12)

where F (t∗, λ∗) = 0 because t∗ is a maximizer of q(s) in (3).
The theorem tells us that we can express t as a function t(λ)
of λ with:

∂λt(λ) = −
[
∂tF (t(λ), λ)

]−1
∂λF (t(λ), λ), (13)

for t in a ball of radius δ0 around t∗ and for λ in a ball of
radius δ1 ≤ δ0 around λ∗, where δ0 is chosen such that

sup
(t,λ)∈Vδ

∥∥∥I − [∂tF (t∗, λ∗)
]−1

∂tF (t, λ)
∥∥∥ ≤ 1

2
, (14)



where Vδ =
{

(t, λ) ∈ RM+1 : |t− t∗| ≤ δ0, ‖λ− λ∗‖ ≤ δ0
}

and δ1 is given by

δ1 = (2MtBλ)−1δ0, (15)

where

Bλ = sup
(t,λ)∈Vλ

‖∂λF (t, λ)‖2,

Mt =
∥∥∥∂tF (t∗, λ∗)−1

∥∥∥
2
.

The following two lemmas give values of δ0 and δ1 that define
balls around t∗ and λ∗ respectively which are included in the
balls required by the Quantitative Implicit Function Theorem
with radii defined in (14) and (15).

Lemma 1: (Radius of ball around t∗) The condition (14)
is satisfied if

δ0 =
σ2|q′′(t∗)|

√
M
(

4 + 2c · ‖λ
∗‖2
σ

) .
Lemma 2: (Radius of ball around λ∗) For δ0 from Lemma

1 and δ1 from condition (15), we have that δλ < δ1 if

δλ =
σ
√
e|q′′(t∗)|

2
√

2M
· δ0.

Given the definition of the function F in (12), we have that

∂tF (t, λ) =

m∑
j=1

λjφ
′′(t− sj),

∂λF (t, λ) = [φ′(t− s1), . . . , φ′(t− sM )]T .

By applying a Taylor expansion to t(λ) around λ∗ in the region
defined by δ0 and δλ, we have that

t(λ) = t(λ∗) +
〈
λ− λ∗, ∂λt(λδ)

〉
,

for some λδ on the line segment determined by λ∗ and λ, so∣∣t(λ)− t(λ∗)
∣∣ ≤ ‖λ− λ∗‖2 · ∥∥∂λt(λδ)∥∥2

. (16)

Bounding the second factor in (16) above, using (13) and
applying a number of manipulations, we obtain

δt ≤
C + δtA

B
· δλ. (17)

where δt = |t(λ)− t(λ∗)|, ‖λ− λ∗‖2 ≤ δλ and

A =
∥∥∥[φ′′(t(λ)− sj)

]M
j=1

∥∥∥
2
,

B =

∣∣∣∣∣∣
M∑
j=1

λ∗jφ
′′(t(λ)− sj)

∣∣∣∣∣∣ ,
C =

∥∥∥[φ′(t(λδ)− sj)]Mj=1

∥∥∥
2
.

We now need to lower bound B and upper bound C + δtA.
For B, by applying a Taylor expansion around t(λ∗)−sj , each
term in the sum is equal to

λ∗jφ
′′(t(λ∗)− sj) +

(
t(λ)− t(λ∗)

)
λ∗jφ

′′′(ξj),

for j = 1, . . . ,M and some ξj in the interval[
t(λ∗)− sj − |t(λ)− t(λ∗)|, t(λ∗)− sj + |t(λ)− t(λ∗)|

]
.

By combining this with the reverse triangle inequality, Cauchy-
Schwartz inequality and Lemma 1, we obtain

B ≥ |q′′(t∗)|
[
1− c‖λ∗‖2

4σ + 2c‖λ∗‖2

]
,

where c ≈ 3.9036. By using the global maximum of φ′(t) and
φ′′(t) for φ(t) Gaussian, we have that

A ≤ 2
√
M

σ2
and C ≤

√
2M

σ
√
e
.

By finally plugging the above inequalities and the result of
Lemma 1 into (17), we obtain the expression for Ct∗ in (6).

B. Proof of Theorem 2
We apply equation (4.2) from [5] with e = 0 (the noise in

the observations) and obtain

ã = a∗ − Φ†Ea∗ − FTEa∗, (18)

where Φ† = (ΦTΦ)−1ΦT is the pseudoinverse of Φ and F =
O(E) is the perturbation of the Φ† due to the perturbation E
of Φ, namely

Φ̃† = Φ† + FT .

In order to obtain an explicit expression for F , we write Φ̃†:

Φ̃† = (Φ̃T Φ̃)−1Φ̃T

=
[
(Φ + E)T (Φ + E)

]−1

(Φ + E)T by (9)

= (ΦTΦ + ∆)−1(ΦT + ET ), (19)

where
∆ = ETΦ + ΦTE + ETE ∈ RK×K . (20)

We then write the first factor in (19) as

(ΦTΦ + ∆)−1 =

[
ΦT
(
I + Φ†

T
∆Φ†

)
Φ

]−1

= Φ†

I +

∞∑
k=1

(−1)k
(

Φ†
T

∆Φ†
)kΦ†

T

= (ΦTΦ)−1 + SΦ, (21)

where

SΦ = Φ†

 ∞∑
k=1

(−1)k
(

Φ†
T

∆Φ†
)kΦ†

T ∈ RK×K , (22)

and in the second inequality in (21) we applied the Neumann
series expansion to the matrix −Φ†

T
∆Φ†, which converges if

‖ − Φ†
T

∆Φ†‖2 < 1. (23)

We will return to condition (23) at the end of this section. We
now substitute (21) in (19), giving

Φ̃† =
[
(ΦTΦ)−1 + SΦ

]
(ΦT + ET )

= Φ† + (ΦTΦ)−1ET + SΦΦT + SΦE
T ,



so we have that

FT = (ΦTΦ)−1ET + SΦΦT + SΦE
T , (24)

which is indeed O(E), since SΦ = O(∆) and ∆ = O(E).
We next upper bound ‖SΦ‖2. From (22) we have

‖SΦ‖2 ≤ ‖Φ†‖22
∞∑
k=1

‖Φ†‖2k2 ‖∆‖k2 . (25)

Now let D be an upper bound on ‖∆‖2, obtained by applying
the triangle inequality in (20), so that

‖∆‖2 ≤ D = 2‖E‖2‖Φ‖2 + ‖E‖22. (26)

Then, from (25) we have

‖SΦ‖2 ≤ ‖Φ†‖22
∞∑
k=1

‖Φ†‖2k2 Dk =
D‖Φ†‖42

1−D‖Φ†‖22
, (27)

where the series converges if D‖Φ†‖22 < 1, in which case the
denominator in the last fraction above is positive. We return
to this condition at the end of the section. We also know that2

‖Φ†‖2 =
1

σmin(Φ)
. (28)

By applying the triangle inequality in (24) and then using (27)
and the fact that ‖(ΦTΦ)−1‖2 = 1/σ2

min(Φ) = ‖Φ†‖22 (from
(28)), we obtain

‖F‖2 ≤ ‖E‖2‖Φ†‖22 +
D‖Φ†‖42

1−D‖Φ†‖22

(
‖Φ‖2 + ‖E‖2

)
, (29)

where D is given in (26). It remains to establish an upper
bound on ‖E‖F , and consequently on ‖E‖2. The following
lemma gives us such a bound.

Lemma 3: (Upper bound of ‖E‖F ) Let E = Φ̃−Φ for Φ
and Φ̃ as defined in (8) and (9) respectively for tj , t̃j ∈ [0, 1]
for j = 1, . . . ,K. Then:

‖E‖F ≤
4e

4
σ2
√
M

σ2
‖t̃− t∗‖2. (30)

By using the triangle inequality and norm sub-
multiplicativity in (18), and then substituting (29) and
(30), we obtain

‖a∗ − ã‖2 ≤ ‖E‖2‖Φ†‖2‖a∗‖2 + ‖E‖22‖Φ†‖22‖a∗‖2

+
‖E‖2D‖Φ†‖42
1−D‖Φ†‖22

(‖Φ‖2 + ‖E‖2)‖a∗‖2

≤ 4e
4
σ2
√
M‖a∗‖2

σ2σmin(Φ)
‖t̃− t∗‖2 +O(‖t̃− t∗‖22),

which is the bound given in Theorem 2. Note that because
‖E‖2 = O(‖t̃ − t∗‖2) (see (30)), the first term is the only
term that is O(‖t̃− t∗‖2) in the first inequality above, so the
other terms are included in the O(‖t̃− t∗‖22) term at the end.

2Using the SVD Φ = UΣV T , we have Φ† = (ΦT Φ)−1ΦT =
(V Σ2V T )−1V ΣUT = V Σ−1UT , so the conclusion follows.

Lastly, we return to condition (23), which must be satisfied
in order for the bound above to hold. By using norm sub-
multiplicativity and the bound on ‖∆‖2 from (26), we obtain

‖Φ†T∆Φ†‖2 ≤ ‖Φ†‖22‖E‖22 + 2‖Φ‖2‖Φ†‖22‖E‖2 (31)

and by requiring that the right hand side above is less than
one, we obtain a quadratic constraint on ‖E‖2, satisfied if

‖E‖2 < σmax(Φ)

√1 +
σ2

min(Φ)

σ2
max(Φ)

− 1

 .

By using the bound on ‖E‖2 from (30), the above holds if
(11) holds. Note that by imposing this, we also ensure that
the condition for the series in (27) to converge holds, since
D‖Φ†‖22 is equal to the right hand side of (31).

IV. CONCLUSION

In this paper, we proved primal stability in the non-negative
super-resolution problem, when addressed via convex duality.
The main ingredient in our analysis is a quantitative version
of the implicit function theorem, a folklore result in the theory
of dynamical systems community.

Our results provide precise orders in the number of mea-
surements for the accuracy of the solution to the convex dual
problem and an `∞ error bound on the primal spike locations.

Future plans include the study of the dual approach to the
noisy super-resolution problem using similar techniques to the
ones developed here.
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