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Abstract—In this work, we construct a structured framework for the
efficient random sampling and recovery of bandlimited graph signals
that lie on product graphs. Product graphs are a model to construct
large complex graphs from smaller simpler building blocks we call graph
atoms, and are a convenient tool to model rich classes of multi-modal
graph-structured data. Our randomized sampling framework prescribes
an optimal sampling distribution over the nodes of the product graph
constructed by only processing these smaller graph atoms. As a result,
the framework achieves significant savings in computational complexity
with respect to previous works that do not exploit the inherent structure
of product graphs.

Index Terms—sampling, bandlimited, graph signal, product graph,
random

1. INTRODUCTION

The task of sampling and recovery is one of the most critical topics
in the signal processing community. With the explosive growth of
information and communication, signals are being generated at an
unprecedented rate from various sources, including social networks,
citation networks, biological networks, and physical infrastructure [1].
Unlike time-series signals or images, these signals possess complex,
irregular structure, which requires novel processing techniques lead-
ing to the emerging field of signal processing on graphs [2]—[4]. Since
the structure can be represented by a graph, we call these signals
as graph signals.

Many examples of real-world graph-structured data are multi-
modal in nature and importantly have an inherent structure. Product
graphs are a graph model that composes graphs from smaller building
blocks we call graph atoms and represent a concise way to model
such data [4], [5]. For example, product graph composition using
a product operator is a natural way to model time-varying signals
on a sensor network as shown in Figure 1(b). The graph signal
formed by the measurements of all the sensors at all the time steps
is supported by the graph that is the product of the sensor network
graph and the time series graph. The k" measurement of the n'"
sensor is indexed by the nt" node of the k" copy of the sensor
network graph. In [5], a generative model that can effectively model
the structure of many large real-world networks was presented by
recursively applying the Kronecker product on a base graph that can
be estimated efficiently. Consequently, constructing a framework for
the efficient sampling and recovery on such product graphs is an
important step for tasks such as graph signal recovery, compression,
and semi-supervised learning on large-scale and multi-modal graphs.

Multiple types of graph products exist, that is, we can enforce
connections across modes in different ways [6]. In the case of the
Cartesian product as in Figure 1(b), the measurement of the nth
sensor at the k" time step is related to not only to its neighboring
sensors at the k' time step but also to its measurements at the
(k—1)*" and (k+ 1) time steps respectively. Previous works have
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Fig. 1: (a) Under the Kronecker product, (ui,u2) ~ (vi,v2) in the
product graph if w3 ~ v; and uz ~ va. (b) Under the Cartesian product,
(u1,u2) ~ (v1,v2) in the product graph if w1 = v; and uy ~ vy or
u]p ~ U1 and u2 = v

however studied sampling strategies on the entire graph in question
which can often be computationally expensive for large graphs.

The assumption that graph signals vary slowly or are smooth over
the graph is a natural one to make. Many real world graph signals
like sensor network data and biological network data are smooth,
or exhibit bandlimited behavior, or have known limited support with
respect to the graph Fourier transform. For example, in the context
of semi-supervised classification on graphs, each vertex represents
one data point to which a label is associated and a graph can be
formed by connecting vertices with weights corresponding to the
affinity or distance between the data points in some feature space. It
is then natural to assume that the label signal has slow variation or
is smooth on the graph and consequently approximately bandlimited.
Since labeled instances are rare or expensive to collect, devising
efficient yet frugal sampling algorithms on large complex graphs is
of significant interest.

In [7], [8], a sampling theory for bandlimited signals was presented
that can be considered as an extension of Nyquist sampling for regular
domains to irregular domains. Further, we have extended this sam-
pling theory to product graphs in [9] by showing how to efficiently
sample and perfectly recover bandlimited signals on product graphs.
Particularly, it was shown that we do not need to process the whole
product graph A or compute its spectral decomposition which is of
complexity O(N?) and is often computationally prohibitive for large
graphs. While the sampling theory characterizes sampling sets that
enable perfect recovery for bandlimited signals, it does not prescribe
easily implementable, robust sampling strategies. Randomized sam-
pling strategies [10], [11], characterized by a probability distribution
over the nodes, present a more flexible framework to sample nodes on
a graph in the presence of noise that is also easily implementable. In
this work, we extend these randomized sampling strategies to product
graphs by exploiting the structure of product graph. Particularly, as
in the case of the sampling theory for product graphs [9], we only
need to process the graph atoms the product graph is composed of.

II. PRODUCT GRAPHS AND GRAPH SIGNAL PROCESSING
A. Graphs

We consider a graph G = (V, A), where V = {vo,...,on_1} is
the set of nodes and A € RM*¥ is the graph shift, or a weighted



adjacency matrix. A Represents the connections of the graph G,
which can be either directed or undirected. The edge weight w(n —
m) = An,m between nodes v, and vy, is a quantitative expression of
the underlying relation between the n*”* and the m!" node, such as a
similarity, a dependency, or a communication pattern. If there exists
a non-zero edge weight between v, and v,,, we write v, ~ Upm,.
Once the node order is fixed, the graph signal is written as a vector

X = [;co,xl,...,qu]T cRY.

Product graphs are graphs whose adjacency matrices are composed
using the product (represented by the square symbol [J) of the
adjacency matrices of smaller graph atoms. Consider two graphs
Gi1 = (V1,A1) and G2 = (V2,A2) . The graph product of
G:1 and Gy is the graph G = G10G2 = (V,A10A3) where
[V| = [Vi| - [V2]. The set of nodes V is the Cartesian product of
the sets V1 and V. That is, a node (u1,uz) is created for every
u1 € V1 and uz € Va.

Typically, we use one of the Kronecker graph product (®, Figure
1(a)), the Cartesian graph product (&, Figure 1(b)) or the strong graph
product (X) which is a superimposition of both the Kronecker and
Cartesian product to compose product graphs. Since the product is
associative, one can extend the above formulation to define product
graphs constructed from multiple graph atoms.

Digital images reside on rectangular lattices that are Cartesian
products of line graphs for rows and columns. A social network with
multiple communities can also be represented by the Kronecker graph
product of the graph that represents a community structure and the
graph that captures the interaction between neighbors. In the context
of recommender engines where we have user ratings for different
entities at different times, we can view this as a signal lying on the
Kronecker product of three graphs, the graph relating the different
users, the graph relating the different entities, and the time graph. In
the following exposition, for clarity and brevity, we only consider the
Kronecker product. However, the results and theorems either hold or
can easily be extended to both Cartesian and strong products. We also
only consider undirected graphs where the graph Fourier transform is
defined with respect to the symmetric graph shift matrix A, but these
results can also be extended for when the graph Fourier transform is
defined with respect to the graph Laplacian and when the graph is
directed.

Single Graph: The spectral decomposition of A is A = VAU
where the eigenvectors of A form the columns of matrix V. We
note that U = V7 since the graph G is undirected and A is
symmetric. A € RY*Y is the diagonal matrix of corresponding
eigenvalues A\g > ..., > Any_1 of A ordered in descending order
unless specified otherwise. These eigenvalues represent frequencies
on the graph [12]. The graph Fourier transform is X = U x where the
vector X represents the signal’s expansion in the eigenvector basis of
the graph shift and describes the frequency content of the graph signal
x. The inverse graph Fourier transform is x = V X and reconstructs
the graph signal from its frequency content by aggregating graph
frequency components weighted by the coefficients of the signal’s
graph Fourier transform.

Product Graphs: We consider a product graph G = (V, A), |V| =
N, that is constructed from J graph atoms G'1,- - - G, - - - Gy, where
G; = (V;,A%),|V;] = Nj, using the Kronecker product where
H;le N; = N. We note that each node 7 on the product graph
corresponds to a tuple of J nodes (i(1),- -+ ,%(;), %)) over the
graph atoms where i;) is a node on G;. We can write the resulting

graph shift matrix of the product graph as
A=AVgAPg...0 AW = ®JJ:1 AW (1)

We can then write the spectral decomposition of the product graph
shift A as A =V AU where

Vzv(l)®v(2)®®v(J) :®3]:1 V(j) (2)
A=A ® A® ® -® A — ®]J:1A(j) 3)
U=UYeu®g...0UY =e/_,UuY =v @

For a given graph atom, Gj, the columns of V) and their
corresponding frequencies are pairs of the form (vl(-j ) ,)\1(-? ?) ). Here,
i¢jy is an index for the nodes in G that varies from (1, ]2, -+ Nj)
where N; = |V;|, the number of nodes in G;.

As a result, under the Kronecker Product, each of the /N basis

vectors in 'V have the form

D g ov® @@ AL o AD s AD)
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across all combinations of the indices (i(1y,- - ,%(;), - ,%(.)). For

example, if V) = [v(ll) |vgl)} and V® = [v§2) |vg2) |V§2)],

VO 8V = [ o |9 v |9 ovi?)|

W & vf? | vl [ i)

While in this work we only focus on the graph Fourier transform
V, this construction can easily be extended to arbitrary bases and
frames. When the basis in question corresponds to the graph wavelet
transform, we note that this is analogous to separable wavelet
construction by tensorization on images and d-dimensional grids. [13]

B. Bandlimited Signals

We can define a class of bandlimited signals on a graph for any
arbitrary ordering of the eigenvectors V denoted by BLx (V):

Definition 1. [11] A graph signal x € R” is bandlimited on a graph
A when there exists a K € {0,1,---, N — 1} such that its graph
Fourier transform X satisfies Z7p =0 for all k> K.

For a product graph, given some subset of K columns of
V over which the signal is bandlimited, we can accordingly
re-order the columns in each of V) such that Vi C

(€)) € () J (@
V(R1)®“.V(;3j)®.“v = ®j:1V(§3j) = V(S> where

‘ (Ry) )
V&) ) corresponds  to the top R; columns of VO and § =
"]

H;Zl R;. We note that K < § < K. In addition, any signal that
is in BLx (V) is also in BLg(V).

III. SAMPLING THEOREM

Suppose that we want to sample exactly M coefficients in a graph
signal x € RN to produce a sampled signal x,q € RM (M < N).
The sampling operator ¥ corresponding to sampling set M C [n] is
a linear mapping from R™ to R™, defined as

L,
\Iji,]’ = { 0

We then interpolate x ¢ with the interpolation operator ® which is
a linear mapping from R™ to RY to get x’ € RY.

J=Mi;

otherwise,

(6)



A. Single Graph

We now show how to sample and perfectly recover bandlimited
graph signals on a single graph:

Theorem 1. [7]. Let ¥ be the sampling operator to sample K
coefficients in x € BLx(U) to produce xp € R¥ and satisfy
rank(¥ V x)) = K. Let W be (¥ V). Perfect recovery is then
achieved by setting ® = V (x) W such that z = &x .

We note that the sample size M should be no smaller than the
bandwidth K and at least one set of K linearly-independent rows in
V (k) always exists.

B. Product Graph

As before, we have a bandlimited graph signal x € BLg (V)
that is associated with the product graph A. It is straightforward to
sample the product graph using the framework constructed in the
previous section and Theorem 1 for a single graph by using the
composed graph-shift A as a whole. Instead, in this section, we look
to exploit the structure of the product graph under the Kronecker
product composition when we sample the graph. We note here that
we are free to order the eigenvectors of V arbitrarily.

Theorem 2. [9] Using Theorem 1, for each of the J graph atoms,
we can construct appropriate sampling (U9)) and interpolation (®U ))
operators corresponding to the subset of columns R; in V) such
that for any x¥) € BL R; (V) we can sample and perfectly recover
such that x) = <I>(])(\I/(]) W)y = eWx (]) In addition, xg\],l) is
associated with a sampled graph whose graph shift is A(]

We then construct the sampling operator ¥ to sample S = H
nodes in the product graph and corresponding interpolation operator
® such that x = &xpq = PUx for any bandlimited graph signal
x € BLi (V) as:

J J
v=QQv? and &= @)
j=1 j=1

We see that we can sample and perfectly recover on the product
graph by composing sampling and interpolation operators constructed
on the graph atoms. We choose I?; nodes from each of the graphs
GY and sample S = szl R; nodes in the product graph such
that each sampled node in the product graph correspond to some
combination of the sampled nodes on the graph atoms. Hence, we
effectively only need to do choose Z}]:1 R; nodes over the graph
atoms. In contrast, in the single graph setting, we need to choose
atleast K nodes, where in general K = O(S).

IV. RANDOM SAMPLING

While the sampling theory discussed above gives conditions on
sampling sets that enable perfect recovery for bandlimited signals, it
does not prescribe easily implementable robust algorithms to choose
these sampling sets. Randomized sampling in this case is particularly
favorable especially for large graphs where standard column subset
selection or search algorithms may be prohibitive. In this section, we
study randomized sampling procedures whereby we sample M nodes
proportional to a sampling distribution {r;} over the nodes. That is,
we sample M nodes without replacement such that in each of the M
rounds, the probability of the i-th node being selected is proportional
to ;.

Inspired by the sampling framework discussed in the last section,
we want to compose a sampling operator on the product graph
from sampling operators we construct on the graph atoms. Consider
the following sampling framework: For each of the J graphs, Gj,

where j = {1,---,J}, we define a probability distribution {77}
over its nodes and a corresponding sampling operator T that
samples the i-th node in G; with probability 7T§J ). As before, we
then compose the sampling operators over the graph atoms using
the Kronecker product as ¥ = ®j:1 U such that the probability
of the the i-th node in the product graph G is the product of the
probabilities of choosing the corresponding nodes on the graph atoms
and m; = szlwf(]j). Similarly to the previous section, this allows
us to compose a sampling operator ¥ and probability distribution
{m:} by only processmg the graph atoms and constructing sampling
operators W () and probability distributions {7r(3 )} over each graph
atom G, which is substantially more computationally efficient.

A. Uniform Random Sampling

We first consider uniform random sampling, which is non-adaptive
to the graph structure, such that 7r< 7 = L Due to lack of space, we
only briefly discuss this and provide llmlted details. Circulant graphs
are a popular and well studied graph model because of their regularity
and linear shift invariance property. We can also approximate any
arbitrary graph by decomposing it into a linear combination of
circulant graphs [14]. A circulant graph is a graph whose adjacency
matrix C is circulant such that it can be represented a polynomial
of the cyclic permutation matrix, A, whose corresponding graph
Fourier transform is the discrete Fourier transform matrix F' such that
C=YrhA =F (ngol hiAiZ‘F. Since the graph Fourier
transform matrix of circulant graphs is F', we can perfectly recover a
circulant-graph signals with bandwidth K by randomly sampling any
M > K signal coefficients. Consider a product graph C = C; ® C,
composed of circulant graphs C; and C. diagonalized by F; and
F'> respectively. We extend this idea to product graphs by showing
that the corresponding graph Fourier transform of C is F1 ® F2, and
consequently it is sufficient to uniformly randomly sample nodes on
each of the graph atoms and compose the sampling operator over the
product graph using the product. A frame F is a generating system
{fi,f2,--- ,fn} of R¥, where N > K. We represent the frame as
an N x K matrix with rows f . The frame F is maximally robust to
erasures when every K X K submatrix obtained by deleting N — K
rows of F is invertible [15]. More generally, it then follows that if
V (k) is (approximately) maximally robust to erasures, any uniform
random sampling operator that samples at least K signal coefficients
guarantees recovery with high probability. We can show that this
holds true for a family of graphs that include circulant graphs, graphs
with a regular structure like d-dimensional grids or ring graphs, and
Erd6s-Rényi random graphs. Further, for product graphs composed
of graph atoms that belong to this family of graphs, it is sufficient to
uniformly randomly sample on each of the graph atoms and compose
the sampling operator using the product operator.

B. Experimentally-Designed Sampling

Uniform random sampling performs sub-optimally for many real-
world irregular graphs and more complex graph models. We now
consider experimentally designed sampling, where the sampling dis-
tribution is non-uniform and adapted to the graph structure. Particu-
larly, we aim to sample the most informative nodes with respect to the
bandlimited class of signals. In [10], a random sampling framework
is presented such that only M = O(K log(K)) measurements are
sufficient to ensure stable and robust recovery of bandlimited graph
signals BLg (V) from their samples. It is shown that the graph
weighted coherence px = maxz{w71/2|\ V(K) 0i||2} governs the
sample complexity for stable and robust recovery. It is then easy
to show that the optimal sampling distribution {r;} that minimizes



the graph weighted coherence px is m; = || V &) 0i I3/ K which
also corresponds to the statistical leverage scores of V(g and can
be computed efficiently. In this section, we generalize this random
sampling framework to product graphs by exploiting the structure of
product graphs. Towards this, we first show how we can compute this
optimal sampling score for a given node of the product graph from
the optimal sampling scores of that node’s corresponding nodes over
the graph atoms for signals in BLg(V).

Lemma 1. Let {7*)} be the optimal sampling d1str1but10n cor-

responding to the j-th graph atom and V(g;) such that 7r1( )) =

| VEQ;F) i) I3/R;. It then follows that the optimal sampling score
for a node on the product graph is simply the product of the sampling
scores of the corresponding nodes in the graph atom such that
J T 5 J
@ - @)
¢ I(J)

(R, )
=1 i=1

IV 8
! S

digj) I3

Under the randomized sampling framework over the graph atoms
described in Lemma 1, we now provide (optimal) sufficient conditions
on the minimum number of samples that ensure a stable embedding
of graph signals in BLx (V) on the product graph.

Theorem 3. Let T sample Mj nodes according to the sampling
distribution 7/)* such that ¥ = ®J U9 samples M = I17_, M;
nodes. Let DY) be a diagonal rescaling matrix such that DY =

GGy T
1/ ]W(J) and D = ® . DY For any d,¢ € (0,1) if,

2K
M > —Sl
62 ( € )7
where S = szle, we have that with probability atleast 1 —e, VD
represents a stable embedding for any x € BLx (V) such that

(1= )lxl3 < [wDx][3 < (1 +6)]x|3 ©)

Proof. Full proof omitted due to lack of space. The proof is a
consequence of Lemma 1 and is in parts constructed similarly to
Theorem 3 in [10]. O

Algorithm 1. We recover the original graph signal by solving the
following optimization problem:

* . ~ 2
xsp = V(x) arg ming H\I/T\IJD2\IJT\Ify - Vi) X(x) H2
g .
= (®j:1 '1)(])))’
where
@) — vy g@OF gOp@2gdHOT
Rj T Rj

Hence, we see that we can compose the interpolation operators

by only processing the graph atoms. We can now provide lower and
upper bounds on the squared error.

Corollary 1. Assume we compose a sampling operator with suffi-
cient samples as proposed in Lemma 1 with respect to the optimal
sampling distribution {7;} and use Algorithm 1 to recover the
original signal. We then have, with probability atleast 1 — e,

[WDe||> < [Ixsp — x|l

1 2
- < ——||¥De
M1+ S v Pk
Proof. This is a direct consequence of Theorem 6 in [10] because of
the restricted isometry property satisfied in Theorem 3. O

Remark 1. Smooth graph signals are bandlimited under a fixed
frequency ordering [11]. We can show that with our framework
on product graphs, under the Cartesian product, we only need

O(KlogK) samples to sample and recover a smooth signal in
BLk (V) which is optimal.

Remark 2. We have seen that we do not need to process the whole
product graph A or compute its spectral decomposition (GFT basis)
to construct random sampling and interpolation operators on the
product graph. Instead, we only need to compute the spectral decom-
positions of its graph atoms A" that are of size O (poly(N lf))

Remark 3. In [11], a class of approximately bandlimited graph
signals was defined to be a more general class of graph signals
that relaxes the requirement of bandlimitedness, but still promotes
smoothness by allowing for a tail after the first K frequency compo-
nents. It is then shown that sampling with probability distribution
{7*} and reconstructing according to Algorithm 1 is minimax
optimal in terms of both the sample complexity and mean square
error rates for the class of approximately bandlimited graph signals.

V. NUMERICAL EXPERIMENTS

In this section, we test our randomized sampling framework on the
product graph A = AV QA® composed over two graph atoms
where AV is the Minnesota road graph [16] with N1 = 2642
nodes which we randomly sample according to the optimal sampling
distribution illustrated in the heatmap in Figure 2 and the path
graph (N2 = 8) which we can uniformly randomly sample. We set
K =100 such that Ry =40 and R2 =3 and S = R: x Ry = 120
and generate a synthetic bandlimited signal on A with respect to
V (k). We perform the experiment over varying noise settings by
injecting the true signal with white gaussian noise such that the noisy
signal we sample from has SNR of 5dB, 10dB or 15dB. We sample
M, nodes on A® and M, nodes on A® with ¥ and ¥®
respectively and compose the sampling operator ¥ = ¥ @ ¢
to sample M = M; - M> nodes on the product graph A. We
recover using the interpolation operators @ and ®® corresponding
to each graph atom as described in Algorithm 1. We illustrate
the performance of our framework which is consistent with our
theoretical analysis in Figure 2 where we plot the reconstruction SNR
versus the size of the sample set M averaged over 20 iterations.
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VI. CONCLUSION

In this work, we presented a robust randomized sampling and
recovery framework for bandlimited signals on product graphs that
yields optimal performance in terms of both the reconstruction
accuracy and sample complexity. Particularly, we showed that by
exploiting the structure of a product graph and designing appropriate
sampling and reconstruction operators by only processing the graph
atoms that the product graph is composed of, we can achieve
significant savings in computational complexity.
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