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Abstract—We discuss harmonic analysis in the setting of hy-
perbolic space, and then focus on sampling theory on hyperbolic
surfaces. We connect sampling theory with the geometry of
the signal and its domain. It is relatively easy to demonstrate
this connection in Euclidean spaces, but one quickly gets into
open problems when the underlying space is not Euclidean. We
discuss how to extend this connection to hyperbolic geometry
and general surfaces, outlining an Erlangen-type program for
sampling theory.

I. INTRODUCTION

This paper discusses harmonic analysis in the setting of
hyperbolic space, and then focuses on developing sampling
theory on surfaces with an intrinsic hyperbolic geometry.

We start with a brief discussion of sampling in Euclidean
space. Section 2 gives an overview of surfaces. This discussion
will show the key role of hyperbolic space in general surface
theory. It concludes with a discussion of the Uniformization
Theorem, which gives that all orientable surfaces inherit their
intrinsic geometry from their universal covers. There are only
three of these covers – the plane C (Euclidean geometry), the
Riemann sphere C̃ (spherical geometry), and the hyperbolic
disk D (hyperbolic geometry). We then develop harmonic
analysis in a general setting, looking at the Fourier-Helgason
transform and its inversion in the context of Euclidean, spher-
ical, and hyperbolic geometries. Section 3 discusses harmonic
Analysis in hyperbolic space, and we conclude with a sampling
formula for a hyperbolic surface. This uses the covering theory
discussed in Section 2.

There are numerous motivations for extending sampling to
non-Euclidean geometries, and in particular, hyperbolic geom-
etry. Irregular sampling of band-limited functions by iteration
in hyperbolic space is possible, as shown by Feichtinger and
Pesenson and Christensen and Ólafsson ([4], [5]). Hyperbolic
space and its importance in Electrical Impedance Tomography
(EIT) and Network Tomography has been mentioned in several
papers of Berenstein et. al. and some methods developed in
papers of Kuchment. More details of these applications may
be found in [2], [4]. The paper [2] includes applications to
network tomography, with emphasis on the internet.

Classical sampling theory applies to functions that are
square integrable and band-limited. A function in L2(R)
whose Fourier transform f̂(ω) =

∫
R f(t)e−2πitωdt is com-

pactly supported and has several smoothness and growth
properties given in the Paley-Wiener Theorem (see, e.g., [12],
[9]). The choice to have 2π in the exponent simplifies certain
expressions, e.g., for f, g ∈ L1 ∩ L2(R), f̂ , ĝ ∈ L1 ∩ L2(R̂),

we have Plancherel-Parseval – ‖f‖L2(R) = ‖f̂‖L2(bR) 〈f, g〉 =
〈f̂ , ĝ〉. The Paley-Wiener Space PWΩ is defined as PWΩ =
{f continuous : f, f̂ ∈ L2, supp(f̂) ⊂ [−Ω,Ω]} . The
Whittaker-Kotel’nikov-Shannon (W-K-S) Sampling Theorem
applies to functions in PWΩ.

Theorem I.1 (W-K-S Sampling Theorem). Let f ∈ PWΩ,
sincT (t) = sin( π

T t)/πt, and δnT (t) = δ(t− nT ).
1) If T ≤ 1/2Ω, then for all t ∈ R,

f(t) = T

([∑
n∈Z

δnT

]
· f

)
∗ sincT (t) . (I.1)

2) If T ≤ 1/2Ω and f(nT ) = 0 for all n ∈ Z, then f ≡ 0.

II. GEOMETRY OF SURFACES

A surface is a generalization of the Euclidean plane. This
section discusses the geometry of surfaces, and, in particular,
three important surfaces – the complex plane C, the Riemann
sphere C̃, and the unit disc D. Background material for this
section can be found in many texts, e.g., [7], [8]. We assume
our surfaces are connected and orientable. Therefore, we can
choose a coordinate system so that differential forms are
positive. We consider Riemann surfaces, but our discussion
carries through to connected and orientable Riemannian man-
ifolds of dimension two. Riemann surfaces allow us to discuss
the Uniformization Theorem, which gives that all orientable
surfaces inherit their intrinsic geometry from their universal
coverings.

Klein’s Erlangen program sought to characterize and clas-
sify the different geometries on the basis of projective ge-
ometry and group theory. Since there is a lot of freedom
in projective geometry, due to the fact that its properties
do not depend on a metric, projective geometry became the
unifying frame of all other geometries. Also, group theory
provided a useful way to organize and abstract the ideas of
symmetry for each geometry. The different geometries need
their own appropriate languages for their underlying concepts,
since objects like circles and angles are not preserved under
projective transformations. Instead, one could talk about the
subgroups and normal subgroups created by the different
concepts of each geometry, and use this to create relations
between other geometries. The underlying group structure is
the group of isometries under which the geometry is invariant.
Isometries are functions that preserve distances and angles of
all points in the set. A property of surfaces in R3 is said to



be intrinsic if it is preserved by isometry, i.e., if it can be
determined from any point on the surface. Isometries can be
modeled as the groups of symmetries of the geometry. Thus,
the hierarchies of the symmetry groups give a way for us to
define the hierarchies of the geometries. We explore the groups
of isometries for three geometries – Euclidean, spherical, and
hyperbolic. We present the Uniformization Theorem, which
shows that for connected and orientable surfaces, these are
the only intrinsic geometries.

We say that S̃ is an unlimited covering of S provided that
for every curve γ on S and every ζ̃ ∈ S̃ with f(ζ̃) = γ(0),
there exists a curve γ̃ on S̃ with initial point ζ̃ and f(γ̃) = γ.
The curve γ̃ is called a lift of γ. This is generally referred
to as the curve lifting property, and it follows directly for an
unlimited, unramified covering.

Given a point z0 on a Riemann surface S, we consider all
closed curves on S passing through z0. We say that any two
of these paths are equivalent whenever they are homotopic.
The set of these equivalence classes forms a group with the
operation of multiplication of equivalence classes of paths.
This group is called the fundamental group of S based at
z0 and denoted as π1(S, z0). Since all Riemann surfaces are
path connected, given any two points z0, z1 on S, the groups
π1(S, z0) and π1(S, z1) are isomorphic. This allows us to refer
to the fundamental group of S (π1(S)) by picking any base
point on S. Note, if S is simply connected, π1(S) is trivial.

There is an important connection between π1(S) and the
smooth unlimited covering spaces S̃ of S. If S̃ is a smooth
unlimited covering space of S, then π1(S̃) is isomorphic to
a subgroup of π1(S). Conversely, every subgroup of π1(S)
determines a smooth unlimited covering corresponding to the
space S̃. Given that the trivial group is a subgroup of every
group, the group of π1(S) determines a simply connected
smooth unlimited covering space S̃, which is called the uni-
versal cover, i.e., the universal covering space is the covering
space corresponding to the trivial subgroup of π1(S).

Given a connected Riemann surface S and its universal
covering space S̃, S is isomorphic to S̃/Γ, where the group
Γ is isomorphic to the fundamental group of S, π1(S) (see
[7], [8]). The corresponding universal covering is simply the
quotient map which sends every point of S̃ to its orbit under
Γ. Thus, the fundamental group of S determines its universal
cover. Moreover, the universal covering is indeed the “biggest”
smooth unlimited covering of a connected Riemann surface, in
the sense that all other unramified unlimited covering spaces
of a Riemann surface can be covered unlimitedly and without
ramification by the universal covering of this surface.

The Uniformization Theorem allows us to classify all uni-
versal covers of all Riemann surfaces. This in turn allows us to
understand the geometry of every Riemann surface. An open
Riemann surface is called hyperbolic if the maximum principle
is not valid. This is equivalent to the existence of a Green’s
function and a harmonic measure. An open Riemann surface
is called parabolic if it does not have these properties. Closed
Riemann surfaces are elliptic.

Theorem II.1 (The Uniformization Theorem). Let S be a
Riemann surface.
1.) Every surface admits a Riemannian metric of constant

Gaussian curvature κ.
2.) Every simply connected Riemann surface is conformally

equivalent to one of the following:
a.) C with Euclidean Geometry (parabolic) – κ = 0 –

with isometries〈{
eiθz + α

}
, ◦
〉

, where α ∈ C and θ ∈ [0, 2π) ,

b.) C̃ with Spherical Geometry (elliptic) – κ = 1 – with
isometries〈{ αz + β

−βz + α

}
, ◦
〉

, where α, β ∈ C and |α|2+|β|2 = 1 ,

c.) D with Hyperbolic Geometry (hyperbolic) – κ = −1
– with isometries〈{

eiθ z − α

1− αz

}
, ◦
〉

, where |α| < 1 and θ ∈ [0, 2π) .

Proof is given in Farkas and Kra [7], Section IV.6. We may
extend Uniformization to orientable Riemannian manifolds of
dimension two. In fact, every orientable topological two-real-
dimensional manifold with a countable basis for its topology
admits a Riemann surface structure [7]. The consequences of
the Uniformization Theorem can be stared very succinctly. The
only covering surface of Riemann sphere C̃ is itself, with the
covering map being the identity. The plane C is the universal
covering space of itself, the once punctured plane C \ {z0}
(with covering map exp(z−z0)), and all tori C/Γ, where Γ is
a parallelogram generated by z 7−→ z+nγ1 +mγ2 , n, m ∈ Z
and γ1, γ2 are two fixed complex numbers linearly independent
over R. The universal covering space of every other Riemann
surface is the hyperbolic disk D. This last result demonstrates
the importance of hyperbolic space.

III. HARMONIC ANALYSIS IN NON-EUCLIDEAN DOMAINS

In a very general setting, we can discuss a harmonic analysis
of a locally compact Hausdorff space X which is acted
upon transitively by a locally compact topological group G
[11]. (Recall that a topological group G is a group equipped
with a topology such that multiplication and inversion are
continuous maps.) We will assume that X has a positive
measure µ, and that G leaves this measure invariant, e.g., µ
is Lebesgue measure on R, and G is the set of normalized
linear translations. If G is also abelian, we define a character
as a continuous group homomorphism ϕ : G → T. The set
of characters form a group Ĝ under pointwise multiplication,
the dual group. Let f ∈ L1(G). The Fourier transform is the
mapping f̂ : Ĝ → C defined by f̂(ϕ) =

∫
G

f(x)ϕ(x)dµ(x) .

(In R, this gives f̂(ω) =
∫

R f(x)e−ixωdx.)
Let f ∈ L2(X) and g ∈ G, and define TX(g)f(x) as

TX(g)f(x) = f(g−1 · x) . Then TX is the unitary representa-
tion of G acting on L2(X). (Recall that a representation of
G is a pair (T,H), where H is a separable Hilbert space and



T : G → GL(H), where GL(H) is the group of invertible
linear maps on H .) The representation is unitary if it preserves
the inner product. It is called irreducible if there is no closed
proper subspace W of H such that T (g)W ⊂ W for all
g ∈ G.) A harmonic analysis of X is the decomposition of
TX into irreducible elements [10], [11].

Recall that a Lie group is a locally Euclidean topological
group whose group operations are C∞ maps. Let us add more
structure to X by letting X = G/K be a symmetric space,
where the group of symmetries of X contains an inversion
symmetry about every point. Symmetric spaces are Rieman-
nian manifolds whose curvature tensor is invariant under all
parallel transports. This holds if and only if each geodesic
symmetry γ(s) → γ(−s) at a point x is a local isometry. For
this to hold globally, the space must possess a transitive group
K of isometries. Then, X = G/K is a homogeneous space
of a Lie group G, where K is a compact subgroup of G, and
where the Lie algebra of K is an involution of the Lie algebra
of G. We can now use the machinery of the Lie theory. Let
E denote the set of C∞ functions on X , and D denote the
set of C∞ functions on X which have compact support. We
can consider the algebra D(G/K) of all differential operators
on X which are invariant under all translations of cosets
xK by g ∈ G, i.e., τ(g) : xK −→ gxK . A function on
X which is an eigenfunction (actually, eigendistribution) of
each D ∈ D(G/K) is a joint eigenfunction of D(G/K). Let
ϕ : D(G/K) −→ C and

Eϕ(X) = {f ∈ E(X) : Df = ϕ(D)f for all D ∈ D(G/K)} .

Eϕ(X) is called a joint eigenspace. Let Tϕ be the represen-
tation (Tϕ(g)f)(x) = f(g−1x) . Tϕ is called an eigenspace
representation.

A harmonic analysis in this setting is the study of the
following. First, the decomposition of arbitrary functions on
G/K into joint eigenfunctions of D(G/K). Second, the
cataloging of Eϕ(X), joint eigenspaces of D(G/K). Third,
determining the set of maps ϕ for which Tϕ is irreducible [10],
[11]. Given that K is compact, then X = G/K is Riemannian
and hence the algebra D(G/K) contains an elliptic operator,
the Laplacian. Therefore, every eigenfunction is an analytic
function.

IV. HARMONIC ANALYSIS IN HYPERBOLIC SPACE

Let z = x + iy ∈ C, with x = <z , y = Im z ∈ R, and let
U = {z ∈ C : Im z > 0}. SL(2, R) is the set of 2×2 matrices
with determinant one, and SO(2) = {A ∈ O(2) : det A = 1}.
The action of SL(2, R) on U is given by{

g(z) =
az + b

cz + d
: ad− bc = 1

}
.

SL(2, R) acts transitively on U with SO(2) being the stabi-
lizer of i, giving the identification

U = SL(2, R)/SO(2) .

We have that U has Riemannian metric ds2 = y−2(dx2+dy2)
and corresponding Riemannian measure dµ = y−2(dx dy). We

normalize the Haar measure dg on SL(2, R) so that∫
U

f(z)
dxdy

y2
=
∫
SL(2,R)

f(g(i))dg .

The Hilbert space L2(SL(2, R) is the space of square
integrable functions with the inner product

〈f, g〉 =
∫

U
f(z)g(z)

dx dy

y2
.

The Laplacian ∆ on U is symmetric and given by

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

If f,∆f ∈ L2(U), then 〈f,∆f〉 ≤ −1
4 ‖f‖

2 . The Fourier-
Helgason transform is defined by

f̂(s, ρ) =
∫

U
f(z)(Im (kρ(z))s

dx dy

y2
,

for s ∈ C, ρ ∈ T, and kρ ∈ SO(2) being a rotation by angle
ρ. For f ∈ D(U), this has the inversion, for t ∈ R,

1
8π2

∫
R

∫
T

f̂((it+1/2), ρ)(Im (kρ(z))(it+1/2)t tanh(πt)dρ dt .

The map f −→ f̂ extends to an isometry from (L2(U), dµ)
onto (L2(R× T, ( 1

8π2 t tanh(πt)dρ dt)).
These provide us the tools for harmonic analysis on U.

Analogously, we can develop hyperbolic geometry in the unit
disk D = {z ∈ C : |z| < 1}. The mapping w = T (z) = z−i

z+i
conformally maps U to D and is an isometry from (U, dsU)
to (D, dsD). The inverse mapping is z = T−1(w) = −i z+1

z−1 .
From the group theoretic viewpoint, SL(2, R) ∼ SU(1, 1).
Let dz denote the area measure on D, and let the measure
dv be given by the SU(1, 1)-invariant measure on D given
by dv(z) = dz/(1 − |z|2)2. The isometries are the Möbius-
Blaschke transformations of D onto D, given by

ϕθ,α(z) = eiθ z − α

1− αz
, α ∈ D, θ ∈ [0, 2π) .

The Laplacian ∆ on D is symmetric and given by

∆ = (1− x2 − y2)−2

(
∂2

∂x2
+

∂2

∂y2

)
.

Let 〈z, b〉 denote the minimal hyperbolic distance from
the origin to the horocycle through z and a point b ∈ ∂D.
Eigenfunctions of ∆ are of the form eβ〈z,b〉. We have that

∆(e(iλ+1)〈z,b〉) = −(λ2 + 1)e(iλ+1)〈z,b〉 , λ ∈ C ,

and that the eigenfunctions of ∆ are the functions

f(z) =
∫

T
e(iλ+1)〈z,b〉 dµ(b) ,

for λ > 0 and b ∈ T, and where µ is an analytic functional
on T.

Let E(D) denote the set of C∞ functions on D, and let

Eλ(D) = {f ∈ E(D) : ∆(f) = −(λ2 + 1)(f)} .



For λ ∈ C, let Tλ be the representation of SU(1, 1) on the
eigenspace of Eλ(D). Then Tλ is irreducible if and only if
iλ + 1 6∈ 2Z.

Let T = ∂D. By identifying the eigenfunctions of ∆ and
determining the set of maps ϕ for which Tϕ is irreducible,
we can write down, for functions f ∈ L1(D, dv), the Fourier-
Helgason transform, which is defined as

f̂(λ, b) =
∫

D
f(z)e(−iλ+1)〈z,b〉 dv(z)

for λ > 0, b ∈ T, and dv(z) = dz/(1 − |z|2)2. The
mapping f → f̂ extends to an isometry L2(D, dv) →
L2(R+ × T, (2π)−1λ tanh(λπ/2)dλ db), i.e., the Plancherel
formula becomes

∫
D |f(z)|2 dz

(1−|z|2)2 =

1
2π

∫
R+×T

|f̂(λ, b)|2λ tanh(λπ/2)dλ db.

Here db denotes the normalized measure on the circle T, such
that

∫
T db = 1, and dλ is Lebesgue measure on R. The

Fourier-Helgason inversion formula is

f(z) =
1
2π

∫
R+

∫
T

f̂(λ, b)e(iλ+1)〈z,b〉λ tanh(λπ/2) dλ db .

We also note that ∆̂f(λ, b) = −(λ2 + 1)f̂(λ, b).

V. SAMPLING ON A HYPERBOLIC SURFACE

The Uniformization Theorem demonstrates the importance
of hyperbolic geometry. The only covering surface of Riemann
sphere C̃ is itself, with the covering map being the identity.
The plane C is the universal covering space of itself, the once
punctured plane C\{z0} (with covering map exp(z−z0)), and
all tori C/Γ, where Γ is a parallelogram generated by z 7−→
z + nγ1 + mγ2 , n, m ∈ Z and γ1, γ2 are two fixed complex
numbers linearly independent over R. The universal covering
space of every other Riemann surface is the hyperbolic disk
D. Let’s refer to these surfaces as hyperbolic surfaces. Given
a connected hyperbolic Riemann surface S and its universal
covering space D, S is isomorphic to D/Γ, where the group
Γ is isomorphic to the fundamental group of S, π1(S). The
corresponding universal covering is simply the quotient map
which sends every point of D to its orbit under Γ.

A function f ∈ L2(D, dv) is called band-limited if its
Fourier-Helgason transform f̂ is supported inside a bounded
subset [0,Ω] of R+. The collection of band-limited functions
with band-limit inside a set [0,Ω] will be denoted PWΩ =
PWΩ(D). This shows that sampling is possible for band-
limited functions. If f ∈ PWΩ(D), f satisfies the following
Bernstein inequality – ‖∆nf‖ ≤ (1 + |Ω|2)n/2‖f‖. We can
find a natural number N such that for any sufficiently small
r, there are points xj ∈ D for which B(xj , r/4) are disjoint,
B(xj , r/2) cover D, and 1 ≤

∑
j χB(xj ,r) ≤ N . Such a

collection of {xj} will be called an (r, N)-lattice. Use this
covering on the fundamental domain D, which is a subregion
of D. At points of the covering intersecting the boundary
of the universal cover, a refined covering is needed when

ρ = dist(xj , ∂D < r/4). In this case, refine the covering
in those covering elements with B(xj , ρ).

Let ϕj be smooth non-negative functions which are sup-
ported in B(xj , r/2) and satisfy that

∑
j ϕj = 1D and define

the operator

Tf(x) = PΩ

∑
j

f(xj)ϕj(x)

 ,

where PΩ is the orthogonal projection from L2(D, dv) onto
PWΩ(D). By decreasing r (and thus choosing xj closer) one
can obtain the inequality ‖I − T‖ < 1, in which case T can
be inverted by T−1f =

∑∞
k=0(I − T )kf. For given samples,

we can calculate Tf and the Neumann series. This provides
the recursion formula

fn+1 = fn + Tf − Tfn .

We have that limn→∞ fn = f with norm convergence. The
rate of convergence is determined by the estimate ‖fn−f‖ ≤
‖I − T‖n+1‖f‖.

Theorem V.1 (Irregular Sampling by Iteration). Let S be
a hyperbolic Riemann surface with universal covering D.
Then there exists an (r, N)-lattice on S such that given
f ∈ PWΩ = PWΩ(S), f can be reconstructed from its
samples on the lattice via the recursion formula

fn+1 = fn + Tf − Tfn .

We have fn+1 → f as n → ∞ in norm. The rate of
convergence is ‖fn − f‖ ≤ ‖I − T‖n+1‖f‖.
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