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Abstract—In this paper we study the Fourier transform and
the possibility to determine the binary expansion of the values
of the Fourier transform in the Zermelo–Fraenkel set theory
with the axiom of choice included (ZFC). We construct a com-
putable absolutely integrable bandlimited function with contin-
uous Fourier transform such that ZFC (if arithmetically sound)
cannot determine a single binary digit of the binary expansion
of the Fourier transform at zero. This result implies that ZFC
cannot determine for every precision goal a rational number that
approximates the Fourier transform at zero. Further, we discuss
connections to Turing computability.

I. INTRODUCTION

The Fourier transform is of fundamental importance in
signal processing and other disciplines such as physics and
mathematics [1]–[6]. In order to be of practical use it is
essential that there is a way to compute it. Although the
Fourier transform is such an important operation there are little
investigations about its computability, except in the discrete,
i.e. finite setting [7]–[11].

We view the Fourier transform as a mapping and are inter-
ested in the computability and approximability of the output
functions. Our goal is to find a function in the time-domain
that is as simple as possible such that the Fourier transform of
this function has still nice analytical properties but is hard to
approximate. To this end we construct a bandlimited function
with continuous Fourier transform, of which we even know
where the maximum is attained, such that this maximum, or,
in other words, the Fourier transform at a certain point, cannot
be determined algorithmically. We even go one step further, by
proving that the strongest of the usually employed axiomatic
mathematical theories, Zermelo–Fraenkel set theory with the
axiom of choice included (ZFC), is not sufficient to prove
statements about the binary representation or the possibility
to approximate the Fourier transform at this point by rational
numbers. More specifically, we construct a Turing computable
absolutely integrable bandlimited function f∗ such that its
Fourier transform f̂∗ is continuous but ZFC (if arithmetically
sound) cannot determine a single binary digit of the binary
expansion of f̂∗(0).

In [12, p. 110, Th. 4] the computability of the Fourier
transform was studied for certain Lp(R) spaces, and type-
2 computability was studied in [13]. An example of a com-
putable continuous function that has a non-computable Fourier
transform was presented in [14].

II. NOTATION

Let N denote the natural numbers. By C we denote the
space of all continuous functions on R, equipped with the

norm ‖ · ‖∞. For Ω ⊆ R, let Lp(Ω), 1 ≤ p <∞, be the space
of all measurable, pth-power Lebesgue integrable functions
on Ω, with the usual norm ‖ · ‖p, and L∞(Ω) the space of
all functions for which the essential supremum norm ‖ · ‖∞ is
finite. The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞, consists of
all functions of exponential type at most σ, whose restriction to
the real line is in Lp(R) [15, p. 49]. The norm for Bpσ is given
by the Lp-norm on the real line. A function in Bpσ is called
bandlimited to σ. We have Bpσ ⊂ Brσ for all 1 ≤ p ≤ r ≤ ∞
[15, p. 49, Lemma 6.6] and ‖f‖r ≤ Cp,r‖f‖p for all f ∈ Bpσ ,
where Cp,r(σ) is a constant that depends on p,r, and σ.

III. BASIC CONCEPTS OF COMPUTABILITY THEORY

The theory of computability is a well-established field in
computer sciences [12], [16]–[19]. We describe some of the
key concepts in this section. For a more detailed treatment of
the topic, see for example [12], [18]–[20].

Alan Turing introduced the concept of a computable real
number in [16], [17]. A sequence of rational numbers {rn}n∈N
is called a computable sequence if there exist recursive func-
tions a, b, s from N to N such that b(n) 6= 0 for all n ∈ N
and rn = (−1)s(n) a(n)

b(n) , n ∈ N. A recursive function is a
function, mapping natural numbers into natural numbers, that
is built of simple computable functions and recursions [21].
Recursive functions are computable by a Turing machine.
A real number x is said to be computable if there exists
a computable sequence of rational numbers {rn}n∈N and a
recursive function ξ : N → N such that |x − rξ(n)| < 2−n

for all n ∈ N. By Rc we denote the set of computable real
numbers and by Cc = Rc+iRc the set of computable complex
numbers. Rc is a field, i.e., finite sums, differences, products,
and quotients of computable numbers are computable. Note
that commonly used constants like e and π are computable. A
non-computable real number was constructed in [22].

IV. COMPUTABLE BANDLIMITED FUNCTIONS

There are several—non equivalent—definitions of com-
putable functions, most notably, Turing computable functions,
Markov computable functions, and Banach–Mazur computable
functions [20]. A functions that is computable with respect to
any of the above definitions, has the property that it maps
computable numbers into computable numbers. This property
is therefore a necessary condition for computability. Usual
functions like sin, sinc, log, and exp are Turing computable,
and finite sums of Turing computable functions are Turing
computable [12]. An example of a non-computable function
was given in [23].



We call a function f elementary computable if there exists
a natural number N and a sequence of computable numbers
{αk}Nk=−N such that

f(t) =

N∑
k=−N

αk
sin(π(t− k))

π(t− k)
. (1)

Note that every elementary computable function f is a finite
sum of Turing computable functions and hence Turing com-
putable. As a consequence, for every t ∈ Rc the number f(t)
is computable. Further, the sum of finitely many elementary
computable functions is computable, as well as the product
of an elementary computable functions with a computable
number λ ∈ Cc. Hence, the set of elementary computable
functions is closed with respect to the operations addition
and multiplication with a scalar. Further, for every elementary
computable function f , the norm ‖f‖Bpπ , p ∈ [1,∞) ∩ Rc, is
computable.

A function in f ∈ Bpπ , p ∈ [1,∞) ∩ Rc, is computable
in Bpπ if there exists a computable sequence of elementary
computable functions {fn}n∈N such that ‖f − fn‖Bpπ ≤ 2−n

for all n ∈ N. By CBpπ , p ∈ [1,∞)∩Rc, we denote the set of
all functions that are computable in Bpπ . Note that CBpπ has a
linear structure. We can approximate every function f ∈ CB∞π
by an elementary computable functions, where we have an
“effective” control of the approximation error. Computability
for the space B∞π,0 (signals in B∞π that converge to zero) is
defined analogously with some minor technical differences. In
this case the Bpπ-norm is replaced by the B∞π -norm.

V. CHAITIN FUNCTION

Partial functions on N are functions that may not be defined
for all n ∈ N. Partial recursive functions are exactly those
functions that can be algorithmically computed with a Turing
machine. The domain dom(ψ) of a partial recursive function ψ
is recursively enumerable, i.e., there exists a recursive function
φ : N → dom(ψ) such that φ[N] = dom(ψ) and φ is a one-
to-one function. Note that φ is a total function that is defined
on all of N. For more details see [21].

In the following we will consider special partial recursive
functions and use connections between the theory of recursive
functions and algorithmic information theory. We follow the
notation used in [24]. Let Σ∗ denote the set of all finite
sequences of 0’s and 1’s. We call u ∈ Σ∗ a bit string and
denote its length by |u|. For two bit strings u and v, u _ v
denotes the concatenation of u and v. We can define a total
order <Σ∗ for the set Σ∗ by putting u <Σ∗ v if

1) |u| < |v|, or
2) |u| = |v| and u lexicographically precedes v.

This ordering 0 < 1 < 00 < 01 < 10 < 11 < 000 < . . .
provides a numbering of Σ∗, and thus a bijection between N
and Σ∗. Hence, any partial recursive function ψ : N→ N can
be interpreted as a mapping from Σ∗ into Σ∗.

A bit string u ⊂ Σ∗ is a prefix of a bit string v ⊂ Σ∗ if
v = u _ r for some r ∈ Σ∗. A ⊂ Σ∗ is called prefix-free
code, if for arbitrary u, v ∈ A with the property that u is a

prefix of v, we have u = v. For a prefix-free code A ⊂ Σ∗

we have the Kraft–Chaitin inequality

ΩA :=
∑
u∈A

1

2|u|
≤ 1. (2)

We call a partial recursive function ψ : Σ∗ → Σ∗ a Chaitin
function if its domain dom(ψ) is a prefix-free code.

By ZFC we denote the Zermelo–Fraenkel set theory with
the axiom of choice included. ZFC is the common and
accepted foundation of mathematics. Almost all mathematical
statements can be formulated in a way that provable statements
can be derived from ZFC. We call ZFC arithmetically sound
if any sentence of arithmetic which is a theorem of ZFC is
true in the standard model of Peano arithmetic (PA).

Let A ⊂ Σ∗ be the domain of a Chaitin function, and let
φA : N → A be the recursive enumeration of the elements of
A, created by the total order <Σ∗ . According to (2) we have

ΩA =

∞∑
N=1

1

2|φA(N)| ≤ 1. (3)

VI. BINARY EXPANSIONS

A rational number x ∈ (0, 1) is called dyadic rational if
we have x = m/2N for some m,N ∈ N. Without loss of
generality we can assume that m and 2N are coprime. For
every number x ∈ (0, 1) that is not dyadic rational we have
the unique representation

x =

∞∑
n=1

an(x)
1

2n
, (4)

where an(x) ∈ {0, 1}, n ∈ N. We call (4) the binary expansion
of x. If x ∈ (0, 1) is a dyadic rational then it has two distinct
binary expansions. We always choose the one that ends in an
infinite sequence of zeros. We call an(x) the n-th binary digit
of x. Further, we say that ZFC can determine the n-th binary
digit of x if in ZFC we can prove the statement “The n-th
binary digit of x is k” for either k = 0 or k = 1.

Solovay proved in [24] the following theorem.

Theorem 1 (Solovay). There exists a Chaitin function ψ∗,
such that ZFC, if arithmetically sound, can determine no single
binary digit of ΩA∗ , where A∗ = dom(φ∗).

VII. FOURIER TRANSFORM AND ZFC

In this section we construct a continuous bandlimited func-
tion f∗ ∈ B1

2π such that f∗ is computable as an element of
Bp2π for all 1 < p < ∞, p ∈ Rc, but ZFC, if arithmetically
sound, cannot determine a single binary digit of f̂∗(0).

Theorem 2. We construct a function f∗ ∈ B1
2π such that:

1) f∗ is computable as an element of Bp2π for all 1 < p <∞,
p ∈ Rc, and as an element of B∞2π ,

2) f∗ has a continuous Fourier transform f̂∗,
3) f̂∗(ω) ∈ Cc for all ω ∈ Rc \ {0},
4) ZFC, if arithmetically sound, cannot determine a single

binary digit of the binary expansion of f̂∗(0).



Due to space constraints, we cannot give the complete proof
of Theorem 2. Instead, we only provide a sketch of the main
steps. We need several Lemmas.

Lemma 1. For all N ∈ N and all ω ∈ R we have∣∣∣∣∣
N∑
k=1

1

k
sin(kω)

∣∣∣∣∣ ≤ π. (5)

Lemma 2. For all N ∈ N and all 0 < δ < π we have∣∣∣∣∣
N∑
k=1

1

k
cos(kω)

∣∣∣∣∣ ≤ log

(
1

δ

)
+

5

2
+ 2π (6)

for all ω ∈ R satisfying |ω − k| ≥ δ for all k ∈ Z.

The proofs of Lemmas 1 and 2, without explicit constants,
can be found for example in [25, pp. 182–191]. The exact
values of the constants on the right hand side of (5) and (6)
are not important, it only matters that they are computable.

For N ∈ N, let

gN (t) =
N∑
k=1

1

k

(
sin(π(t− k))

π(t− k)

)2

, t ∈ R.

Lemma 3. Let 1 < p < ∞. There exists a constant C1(p)
such that for all N ∈ N we have ‖gN‖p ≤ C1(p). For 1 <
p < ∞, p ∈ Rc, the constant C1(p) is computable, and gN
is computable in Bp2π . Further, we have ĝN (0) ≥ log(N + 1)
for all N ∈ N.

Proof of Theorem 2. For N ∈ N, let

hN (t) =
gN (t)

ĝN (0)
, t ∈ R.

Since gN is computable in Bp2π , p ∈ (1,∞) ∩ Rc, and ĝN (0)
is a computable number, it follows that hN is computable in
Bp2π . We further have

‖hN‖p =
‖gN‖p
ĝN (0)

≤ C1(p)

log(N + 1)
, (7)

for p ∈ (1,∞), where we used Lemma 3. We have ‖hN‖1 =
ĥN (0) = 1. Further, hN is continuous, because hN ∈ B1

2π .
Let

f∗(t) =

∞∑
N=1

1

2|φA∗ (N)|hN (t), t ∈ R, (8)

where A∗ is the set from Theorem 1. Since
∞∑
N=1

∥∥∥∥ 1

2|φA∗ (N)|hN

∥∥∥∥
B1

2π

=

∞∑
N=1

1

2|φA∗ (N)| ≤ 1,

according to (3), we see that the series in (8) converges in the
B1

2π-norm, and that f∗ ∈ B1
2π . Note that f∗ ∈ B1

2π implies
that f̂∗ is continuous because f∗ ∈ L1(R). Moreover, for p ∈
(1,∞) and M ∈ N, we have∥∥∥∥∥f∗ −

M∑
N=1

1

2|φA∗ (N)|hN

∥∥∥∥∥
Bp2π

≤
∞∑

N=M+1

1

2|φA∗ (N)| ‖hN‖Bp2π

≤
∞∑

N=M+1

C1(p)

2|φA∗ (N)| log(N + 1)
≤ C1(p)

log(M + 2)
,

where we used (7) and (3). This shows that, for p ∈ (1,∞)∩
Rc, the computable sequence {

∑M
N=1 hN/2

|φA∗ (N)|}∞M=1

converges effectively in the Bp2π-norm to f∗. Hence, f∗ is com-
putable in Bp2π for all p ∈ (1,∞)∩Rc. f∗ is also computable
in B∞2π because we have ‖f‖B∞2π ≤ (1 + 2π)‖f‖Bp2π for all
f ∈ Bp2π , according to Nikol’skiı̆’s inequality [15, p. 49]. Since
f∗ ∈ B1

2π , we can apply Lebesgue’s dominated convergence
theorem, which gives f̂∗(ω) =

∑∞
N=1 ĥN (ω)/2|φA∗ (N)|.

Hence, we see that

f̂∗(0) =

∞∑
N=1

1

2|φA∗ (N)| = ΩA∗ ,

which implies that no single binary digit of the binary expan-
sion of f̂∗(0) 6∈ Rc can be computed according to Theorem 1.

It remains to prove item 3). Let ω ∈ (−2π, 2π) \ {0} be
arbitrary but fixed and δ = min{|ω|, 2π−ω, 2π+ω}. Then a
short calculation shows that

|ĥN (ω)| = q̂(ω)

ĝN (0)

∣∣∣∣∣
N∑
k=1

1

k
cos(kω)− i

N∑
k=1

1

k
sin(kω)

∣∣∣∣∣
≤ 1

ĝN (0)

(
log

(
1

δ

)
+

5

2
+ 2π+π

)
︸ ︷︷ ︸

=:C2(δ)

≤ C2(δ)

log(N + 1)
,

where we used Lemmas 1 and 2 in the first inequality. The
function q̂(ω) is given by q̂(ω) = 1 − |ω|/(2π) for |ω| ≤ 2π
and by q̂(ω) = 0 otherwise. It follows that∣∣∣∣∣f̂∗(ω)−

M∑
N=1

1

2|φA∗ (N)| ĥN (ω)

∣∣∣∣∣ ≤
∞∑

N=M+1

1

2|φA∗ (N)| |ĥN (ω)|

≤ C2(δ)

log(M + 2)

∞∑
N=M+1

1

2|φA∗ (N)| ≤
C2(δ)

log(M + 2)
.

For ω ∈ (−2π, 2π) ∩ Rc \ {0}, C2(δ) is computable and we
see that the sequence {

∑M
N=1 ĥN (ω)/2φA∗ (N)}∞M=1 of com-

putable numbers converges effectively to f̂∗(ω). This shows
that f̂∗(ω) is computable for all ω ∈ (−2π, 2π) ∩ Rc \ {0}.
Since f∗ ∈ B1

2π and f∗ is continuous, we have f̂∗(ω) = 0 for
all |ω| ≥ 2π. Hence, it follows that f̂∗(ω) is computable for
all ω ∈ Rc \ {0}.

It immediately follows that ZFC, if arithmetically sound,
cannot determine a single binary digit of the norm ‖f̂∗‖∞.

Corollary 1. Let f∗ be the same function as in Theorem 2.
Then ZFC, if arithmetically sound, cannot determine a single
binary digit of the binary expansion of ‖f̂∗‖∞.

Proof. For ω 6= 0 we have

|f̂∗(ω)| ≤
∞∑
N=1

|ĝN (ω)|
2|φA∗ (N)|ĝN (0)

≤
∞∑
N=1

1

2|φA∗ (N)| = f̂∗(0),

which shows that f̂∗(0) is the maximum of the function |f̂∗|.
Hence, according to Theorem 2, ZFC, if arithmetically sound,
cannot determine a single binary digit of the binary expansion
of ‖f̂∗‖∞ = maxω∈R|f̂∗(ω)| = f̂∗(0).



The result of Corollary 1 is surprising because we have
f̂∗(ω) ∈ Cc for all ω ∈ Rc\{0} and limω→0 f̂∗(ω) = f̂∗(0) =
‖f̂∗‖∞.

VIII. TURING COMPUTABILITY

Next, we briefly discuss the consequences of Theorem 2
for the Turing computability of the Fourier transform f̂∗. In
the proof of Theorem 2, a function f∗ ∈ B1

2π was constructed
such that

f̂∗(0) = ΩA∗ =

∞∑
N=1

1

2|φA∗ (N)| ,

where A∗ is the domain of the Chaitin function ψ∗ from
Theorem 1. The partial sums xl =

∑l
N=1 2−|φA∗ (N)| define

a monotonically increasing sequence {xl}l∈N of dyadic ratio-
nal numbers. This sequence is completely described by PA.
Further, the Kraft–Chaitin inequality gives that xl ≤ 1 for
all l ∈ N. Hence, it follows from ZFC that the limit ΩA∗ =
liml→∞ xl exists and is unique. ΩA∗ is a transcendental num-
ber and hence not dyadic rational [24], [26]. Thus, we have
α = |1/2−ΩA∗ | > 0. However, ZFC, if arithmetically sound,
cannot determine whether 1/2−ΩA∗ = α or 1/2−ΩA∗ = −α,
or, equivalently, whether ΩA∗ ∈ (0, 1/2) or ΩA∗ ∈ (1/2, 1).

The next theorem is a negative statement about the approx-
imability of ΩA∗ by rational numbers in ZFC.

Theorem 3. Let ΩA∗ be the number that was constructed in
the proof of Theorem 2. There exists a natural number M0 such
that ZFC, if arithmetically sound, cannot prove the statement
|ΩA∗ − λ| < 2−M0 for any λ ∈ Q ∩ (0, 1).

Remark 1. Even though the statement |ΩA∗ − λ| < 2−M0 is
true for a countably infinite subset of Q ∩ (0, 1), it cannot be
proved for a single of these rational numbers.

Proof. Suppose that the statement of the theorem is false.
Then, for every M ∈ N, ZFC can determine a λM ∈ Q
such that |ΩA∗ − λM | < 2−M . λM is in Q, i.e., we have
λM = pM/qM for some pM , qM ∈ N, where we assume
that pM and qM are coprime. Hence, we can determine
dM = |1/2 − λM | = |qM − 2pM |/(2qM ). {dM}M∈N is
a sequence of rational numbers. Let M1 be the smallest
natural number such that 2−M1 < dM1

. For M1 we compute
vM1 = qM1 − 2pM1 . If vM1 > 0 then λM1 < 1/2, and if
vM1 < 0 then λM1 > 1/2. vM1 = 0 cannot occur. Further,
if λM1

< 1/2 then we have ΩA∗ < 1/2, and if λM1
> 1/2

then we have ΩA∗ > 1/2. Hence we can determine whether
ΩA∗ < 1/2 or ΩA∗ > 1/2. This means we can determine the
first binary digit of the binary expansion of ΩA∗ , which is a
contradiction.

The observation that for any number that is Turing com-
putable, ZFC can determine every binary digit of the binary
expansion, leads to the following corollary.

Corollary 2. Let f∗ be the same function as in Theorem 2.
If ZFC is arithmetically sound, then f̂∗ is not Turing com-
putable as continuous function, because f̂∗(0) is not Turing
computable.
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