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Abstract—The concept of frames is used extensively for the
representation of signal or functions. Recently, this concept is
applied more and more for the representation of operators, both
in theory as well as in the application for the numerical solutions
of operator equations. In this paper we first give a survey about
the matrix representation of operators using frames. Then we
prove that the tensor product of frames forms a Banach frame
and an atomic decomposition for the space of bounded operators
of Hilbert spaces.

I. INTRODUCTION

A very important question in mathematics is how a given
object can be represented as sum of certain building blocks. A
standard approach is using orthonormal bases, but redundant
systems, i.e. frames, have gained a lot of prominence in
the last decades. The mathematical concept of frames was
introduced by [20] and popularized by [19]. These systems
can be used to represent functions by discrete samples in a
stable and invertible way. Frame theory is now a very active
field of mathematical research [1], [13], [30] and has found
applications in signal processing [8], quantum mechanics [24],
acoustics [6] and various other fields. The standard setting for
frames are Hilbert spaces, but, amongst others, it can also be
generalized to the Banach space setting [26], [14], [11].

It is very natural to extend this approach to operators. On
an abstract level, it is well known that for orthonormal bases
operators can be uniquely described by a matrix representation
[25]. An analogous result holds for frames and their duals
[4], [5]. For a bounded, linear operator O, define the infinite
matrix 〈Oφl, ψk〉, for Ψ = (ψk)k∈K and Φ = (ψk)k∈K being
frames in the Hilbert space H . On the theoretical level, there
are several results related to the representation of operators by
matrices using frames, see e.g. [22], [28], [34]. On the applied
side, in the numerical treatment of operator equations this is
related to the Galerkin scheme [31]. In the Finite Element
Method [9] and the Boundary Element Method [23] usually
spline-like bases are used. More recently, wavelet bases [18]
and frames [32], [27], [35] have been applied.

In [3], it was shown that for any two frames Ψ and Φ the
tensor product Ψ ⊗ Φ forms a frame in the class of Hilbert
Schmidt operators HS.

Here we use the same results to show that the tensors form a
Banach frame as well as an atomic decomposition in the space
of all bounded operators for the Hilbert space H. While being
purely a frame theory result, this could be used in the future

for the numerical treatment of operator equations in settings,
where e.g. some smoothness criterion are based on Banach
norms [17] or where a scale of (Banach) spaces are relevant
[16].

In Section II we give the preliminaries, in particular details
on frame theory. In Section III we give a review of results for
the matrix representation of operators using frames. Finally, in
Section IV we show that the tensors of two frame systems are
a Banach frame and an atomic decomposition for the space of
bounded operators.

II. PRELIMINARIES

Denote the canonical basis in `2 by δi.
Let f ∈ H1, g ∈ H2, define the tensor product as the oper-

ator from H2 to H1 given by (f ⊗ g) (h) := 〈h, g〉 f for h ∈
H2. It is a bounded operator with bound ‖f‖H1

· ‖g‖H2
.

A. Frames in Hilbert Spaces

A sequence Ψ = (ψk|k ∈ K) is called a frame [20], [12],
[10] for the Hilbert spaceH, if there exist constants AΨ, BΨ >
0, such that

AΨ · ‖f‖2H ≤
∑
k

|〈f, ψk〉|2 ≤ BΨ · ‖f‖2H ∀ f ∈ H (1)

Here AΨ is called a lower and BΨ an upper frame bound. If
we only consider the right inequality such a sequence is called
a Bessel sequence.

For a Bessel sequence, Ψ = (ψk), define the analysis
operator CΨ : H → `2(K) by CΨ(f) = (〈f, ψk〉)k. Let
DΨ : `2(K) → H be the synthesis operator DΨ ((ck)) =∑
k

ck ·ψk. Let SΨ : H → H be the (associated) frame operator

SΨ(f) =
∑
k

〈f, ψk〉·ψk. CΨ and DΨ are adjoint to each other,

DΨ = C∗Ψ with ‖DΨ‖`2→H = ‖CΨ‖H→`2 ≤
√
B. The series∑

k

ck · ψk converges unconditionally for all (ck) ∈ `2.

For a frame Ψ = (ψk) the operator CΨ is a bounded, injec-
tive operator with closed range and SΨ = C∗ΨCΨ = DΨD

∗
Ψ is

a positive invertible operator satisfying AΨIH ≤ SΨ ≤ BΨIH
and B−1

Ψ IH ≤ S−1
Ψ ≤ A−1

Ψ IH. Even more, we can find an
expansion for every member ofH: The sequence Ψ̃ =

(
ψ̃k

)
=(

S−1
Ψ ψk

)
is a frame with frame bounds B−1

Ψ , A−1
Ψ > 0, the so

called canonical dual frame. Every f ∈ H has the expansions



f =
∑
k∈K

〈
f, ψ̃k

〉
ψk and f =

∑
k∈K
〈f, ψk〉 ψ̃k where both

sums converge unconditionally in H.
Two sequences (ψk), (φk) are called biorthogonal if

〈ψk, φj〉 = δkj for all h, j.
A sequence (ψk) in H is called a Riesz sequence if there

exist constants AΨ, BΨ > 0 such that the inequalities

AΨ ‖c‖22 ≤

∥∥∥∥∥∑
k∈K

ckψk

∥∥∥∥∥
2

H

≤ BΨ ‖c‖22

hold for all finite sequences (ck). It is called a Riesz basis, if
it is complete as well.

For a frame (ψk) the following conditions are equivalent:
(i) (ψk) is a Riesz basis for H.

(ii) The coefficients (ck) ∈ `2 for the series expansion
with (ψk) are unique, i.e. the synthesis operator DΨ

is injective.
(iii) The analysis operator CΨ is surjective.
(iv) (ψk) and (ψ̃k) are biorthogonal.

The Gram matrix GΨ,Φ is given by (GΨ,Φ)j,m = 〈φm, ψj〉,
j,m ∈ K. Therefore as an operator from `2 into `2 it is
given by GΨ,Φ = CΨ ◦ DΦ. For a frame GΨ,Ψ̃ represents
the projection on ran (CΨ), denoted by Πran(CΨ).

B. Banach frames

The concept of frames can be extended to Banach spaces
[26], [14], [11]:

Let X be a Banach space and Xd be a Banach space of
scalar sequences. A sequence (ψk) in the dual X ′ is called
a Xd-frame for the Banach space X if there exist constants
AΨ, BΨ > 0 such that

AΨ‖f‖X ≤ ‖〈f, ψk〉k∈K‖Xd
≤ BΨ‖f‖X for all f ∈ X.

(2)
An Xd-frame is called a Banach frame with respect to a

sequence space Xd, if there exists a bounded reconstruction
operator R : Xd → X , such that R (ψk(f)) = f for all
f ∈ X .

On the other hand the pair (ψk, φk) is called an atomic
decomposition of X with respect to Xd if Ψ is a Banach
frame and Φ := (φk) ⊆ X and f =

∑∞
k=1 ψk(f)φk,∀f ∈ X .

III. MATRIX REPRESENTATION USING FRAMES

It is well known that operators can be uniquely described
by a matrix representation [25] using fixed orthonormal bases.
The same can be constructed with frames and their duals,
see [4]. Note that we will use the notation ‖.‖H1→H2

for the
operator norm in B (H1,H2) to be able to distinguish between
different operator norms.

A. Operators on Hilbert Spaces

Theorem III.1. Let Ψ = (ψk) be a frame in H1 , Φ = (φk)
in H2.

1) Let O : H1 → H2 be a bounded, linear operator. Then
the infinite matrix(

M(Φ,Ψ) (O)
)
m,n

= 〈Oψn, φm〉H2

defines a bounded operator from `2 to `2 with∥∥∥M(Φ,Ψ) (O)
∥∥∥
`2→`2

≤
√
BΦ ·BΨ · ‖O‖H1→H2

. (3)

As an operator `2 → `2

M(Φ,Ψ) (O) = CΦ ◦O ◦DΨ

This means that the function

M(Φ,Ψ) : B (H1,H2)→ B
(
`2, `2

)
is a well-defined bounded operator.

2) On the other hand let M be an infinite matrix defining
a bounded operator from `2 to `2, (Mc)i =

∑
k

Mi,kck.

Then the operator O(Φ,Ψ) defined by(
O(Φ,Ψ) (M)

)
h =

∑
k

∑
j

Mk,j 〈h, ψj〉

φk,

for h ∈ H1. This is a bounded operator from H1 to H2

with∥∥∥O(Φ,Ψ) (M)
∥∥∥
H1→H2

≤
√
BΨ ·BΨ ‖M‖`2→`2 . (4)

We have

O(Φ,Ψ)(M) = DΦ ◦M ◦CΨ =
∑
k

∑
j

Mk,j · φk ⊗i ψj

This means the function O(Φ,Ψ) : B
(
`2, `2

)
→

B (H1,H2) is a well-defined bounded operator.

For frames more properties can be proved [4]:

Proposition III.2. Let Ψ = (ψk) be a frame in H1, Φ = (φk)
in H2 . Then we have

idB(H1,H2) =
(
O(Φ̃,Ψ̃) ◦M(Φ,Ψ)

)
. (5)

And therefore for all O ∈ B (H1,H2):

O =
∑
k,j

〈Oψj , φk〉 φ̃k ⊗ ψ̃j . (6)

We have thatM(Φ,Ψ) is injective and O(Φ,Ψ) is surjective. Let
H1 = H2, then O(Ψ,Ψ̃)(Id`2) = idH1

Let Ξ = (ξk) be any
frame in H3, and O : H3 → H2 and P : H1 → H3. Then

M(Φ,Ψ) (O ◦ P ) =
(
M(Φ,Ξ) (O) · M(Ξ̃,Ψ) (P )

)
The other operator O is, in general, not multiplicative in

the above sense. It can even been shown that if it is for all
matrices, then the involved sequences must be Riesz bases [7].
But we can state the following result:

Theorem III.3. [7] Let Φ, Ξ, and Ψ be frames for H1, H2,
and H3 respectively, and M (1) and M (2) be in B

(
`2
)
. Then

if
(a) M (2)(ran (CΨ)) ⊆ ran (CΞ) , or
(b) M (1)∗(ran (CΦ)) ⊆ ran (CΞ) ,
we get that

O(Φ,Ψ)
(
M (1) ·M (2)

)
=

O(Φ,Ξ)
(
M (1)

)
◦ O(Ξ̃,Ψ)

(
M (2)

)
.



B. Tensor of Frames in HS
In [3] the following was proved:

Theorem III.4. Let (φk), (ψi) be sequences in H2 resp. H1.
1) If (φk) and (ψi) are Bessel sequences, then (ψi⊗φk) is a

Bessel sequence for HS(H2,H1) with bound BΦ ·BΨ.
2) If (φk) and (ψi) are frames, then (ψi ⊗ φk) is a frame

for HS(H2,H1) with bounds AΦ ·AΨ and BΦ ·BΨ.
The analysis operator is

Cψi⊗φk
(O) =M(ψk,φj) (O)k,j =

(
〈Oφj , ψk〉H1

)
.

The synthesis operator is

Dψi⊗φk
(M) = O(ψk,φj) (M) =

∑
k,j

Mk,j φk ⊗ ψj .

The frame operator is Sψi⊗φk
= Sψi

⊗ Sφk
, meaning

that Sψi⊗φk
(O) = Sψi

◦ O ◦ Sφk
. The canonical dual

frame is ( ˜ψi ⊗ φk) =
(
ψ̃i ⊗ φ̃k

)
.

3) If (φk) and (ψi) are Riesz bases, then (ψi ⊗ φk) is a
Riesz basis forHS(H2,H1). The biorthogonal sequence
is (ψ̃i ⊗ φ̃k).

This can easily be extended to more operator spaces. In
the next section we prove results for the space of bounded
operators, in the upcoming [7] we will deal with Schatten-
p-class operators, resulting in Gelfand triplets and scales of
Banach spaces.

IV. TENSORS OF FRAMES IN B (H1,H2)

The space of bounded operators on `2 can be classified, see
[15], [29]. For this section it is important that B

(
`2, `2

)
is a

Banach space of matrices and therefore a sequence space. For
some properties regarding Banach frames [11], [33] particular
classes of sequence are considered: a Banach sequence space is
called a BK-space if the coordinate functionals are continuous.
It is called a CB-space, if the canonical vectors form a
Schauder basis. It is called a RCB-space if it is a reflexive
CB-space.

In B
(
`2, `2

)
the canconical vectors are a Schauder basis,

where we consider the canonical matrices Ei,j = δi · δj [2].
The coordinate functionals are continuous. Indeed, assume

‖Mn −M‖B(`2,`2) → 0.

We have that

|Mn
i,j −Mi,j | = |〈(Mn −M) δi, δj〉| ≤

≤ ‖(Mn −M) δi‖2 ‖δj‖2 ≤ ‖M
n −M‖B(`2,`2) .

It follows that B
(
`2, `2

)
is a BK-space and a CB-space,

but not an RCB-space (as we know that the predual is not
the dual space.)

The operator f⊗g is not only an element in B (H1,H2) but
can also be considered as element of the dual of this space. We

set, see e.g. [21], 〈O, f ⊗ g〉B(H1,H2),B(H1,H2)′ := 〈Og, f〉H2

for an O ∈ B (H1,H2). By using the space of Hilbert space
operators as motivation we show that this is a very natural
connection, as for any ONB (ek) we have

〈O, f ⊗ g〉HS =
∑
k

〈Oek, (f ⊗ g) ek〉 =

=
∑
k

〈Oek, f〉 〈ek, g〉 = 〈Og, f〉H2
.

This was already used in [3] e.g. for Theorem III.4.
In summary we can show

Proposition IV.1. Let Ψ and Φ be frames in H1 respectively
H2. Then Ψ ⊗ Φ :=

(
ψk ⊗ φl

)
(k,l)∈K×K is a Xd-frame for

B (H1,H2) for the BK and CB-space of sequences Xd =
B
(
`2, `2

)
. The bounds are

√
AΦ ·AΨ and

√
BΦ ·BΨ.

Proof. By the comments above we have clarified the properties
of the sequence space X .

By (3) we have the upper bound
√
BΨ ·BΦ.

By (5) we have

O = O(Φ̃,Ψ̃)
(
M(Φ,Ψ) (O)

)
.

By (4)

‖O‖H1→H2
≤
√

1

AΨ
· 1

AΦ

∥∥∥M(Φ,Ψ) (O)
∥∥∥
`2→`2

,

and therefore in summary√
AΨ ·AΦ ‖O‖H1→H2

≤
∥∥∥〈O,ψk ⊗ φk〉B(X1,X2),B(X1,X2)′

∥∥∥
Xd

≤
√
BΨ ·BΦ ‖O‖H1→H2

.

We will now investigate the Banach frame properties of the
set {ψk ⊗ φk}(k,l)∈K×K .

Corollary IV.2. Let Ψ and Φ be frames in H1 respectively
H2. Then Ψ ⊗ Φ := (ψk ⊗ φl)(k,l)∈K×K is a Banach frame
for B (H1,H2).

Proof. The reconstruction is just (5), so the reconstruction
operator is O((Φ̃,Ψ̃)).

If we now consider Ψ ⊗ Φ as element in B (H1,H2) we
can show

Corollary IV.3. Let Ψ and Φ be frames inH1 respectivelyH2.
Then the pair

(
Ψ⊗ Φ, Ψ̃⊗ Φ̃

)
is an atomic decomposition

for B (H1,H2).

Proof. This is just Prop. IV.1 and a rephrasing of (6):

O =
∑
k,j

〈O,ψk ⊗ φl〉B(X1,X2),B(X1,X2)′ ψ̃k ⊗ ψ̃l.

Please note that similar arguments are valid if we consider
Banach spaces instead of Hilbert spaces.
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