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Abstract—Quantization of signals and parameters happens in
all digital data acquisition devices. It is commonly regarded as
a non-ideality of the system, and shall be taken into account
when designing or analyzing a system. The topic of one-bit
compressed sensing studies the effect of quantization in the
extreme case where the samples are quantized with only one
bit, i.e., the sign bit. The recovery of a sparse signal based on
one-bit measurements is widely accomplished via thresholding
methods or variants of `1-minimization techniques. In this paper,
we introduce a recovery method arising from smoothing directly
the `0 pseudo-norm. While we numerically verify the superior
performance of the proposed method compared to the state-
of-the-art techniques in our simulations, we briefly discuss the
convergence analysis of this method.

Index Terms—Compressed Sensing, One-bit measurements,
Quantization.

I. INTRODUCTION

The framework of compressed sensing investigates the
sampling and reconstruction of high-dimensional signals x ∈
RN (or CN ) using low-dimensional linear measurements
yM×1 = ΦM×NxN×1 with M < N [1], [2]. The under-
determined system of equations might have a unique K-sparse
solution x ∈ ΣK where ΣK := {x ∈ RN : ‖x‖0 =
|supp(x)| ≤ K}, if Φ satisfies certain constraints. The
sparsest solution of this system can be ideally recovered via

x∗ = arg min
u∈RN

‖u‖0 s.t. y = Φu. (1)

In conventional compressed sensing, the measurements are
assumed to be continuous and real-valued. In practical digital
systems, however, a quantization stage is always present, that
maps real-valued quantities into a finite set. In recent years,
some theoretical and practical results in quantized compressed
sensing are achieved [3], [4].

An extreme case of quantization is the one-bit quantization
scenario, in which a sparse signal x ∈ ΣK is encoded as

ȳ = sign(Φx) ∈ {±1}M (2)

where Φ ∈ RM×N is the measurements matrix, and the
observed vector ȳ is a signed version of the continuous-
valued measurements. On one hand, as the sign measure-
ments carry less information compared to continuous-valued
measurements, generally, larger number of sign measurements
are required for similar reconstruction quality. One the other
hand, sign measurements are more robust against nonlinear
distortions. Thus, distributing the measurement budget into
multiple sign measurements could be justifiable.

The study of one-bit compressed sensing was initiated in
[5] and gained more attention in [6] and [7]. The known re-
construction techniques from one-bit measurements are either
greedy methods (e.g., BIHT) or `1 minimization techniques
adapted to sign measurements. In this paper, we introduce
a new method based on smoothed `0-norm. The rest of the
paper is organized as follows: In Section II we explain the
model in this paper. In Section III, we propose our algorithm,
and in Section IV, we briefly discuses its convergence. The
simulation results are reported in Section V.

II. PROBLEM MODEL AND RELATED WORKS

In one-bit compressed sensing, we would like to recover
a sparse signal x ∈ ΣK from the sign of a set of linear
measurements (2). Therefor, we are looking for the solution
of the following problem:

x∗ = arg min
u∈RN

‖u‖0 s.t. ȳ = sign(Φu). (3)

The obvious drawback of one-bit compressed sensing is the
loss of norm (amplitude) information. With slightly different
sampling strategies, the extraction of norm is also possible [8],
[9]. For the purpose of this paper, we restrict our signal x to
the unit ball

SN−1 := {x ∈ RN : ‖x‖2 = 1} (4)

and solve the following optimization problem

x∗ = arg min
u∈SN−1

‖u‖0 s.t. ȳ = sign(Φu). (5)

Here, we search for u on the unit ball that has the same sign
information as the original sign(Φx). The first reconstrcution
gaurantee is provided in [6] when Φ is a Gaussian ensemble:

Theorem 1. Fix 0 ≤ β ≤ 1 and ε > 0. If the entries of
the measurement matrix Φ follow the Gaussian distribution
N (0, 1) and the number of measurements M satisfies

M > 2
ε

(
2K log(N) + 4K log( 17

ε ) + log( 1
β )
)
, (6)

then, for all x, x̂ ∈ Σ∗K := ΣK ∩ SN−1 we have that

‖x− x̂‖2 > ε =⇒ sign(Φx) 6= sign(Φx̂) (7)

with probability greater that 1− β.

This result implies that the solution to (5) with sufficiently
large number of measurements (M ≥ O(K log(N)

ε )) is con-
trollably close to the original signal. But the optimization



problem (5) is NP-Hard in general. For a convex relaxation,
it is common to replace ‖x‖0 by ‖x‖1. In [5], a renormalized
fixed point iteration (RFPI) algorithm based on the following
minimization problem is proposed:

x∗ = arg min
u∈RN

‖u‖1 + λ‖(ȲΦu)−‖22 s.t. ‖u‖2 = 1 (8)

where in order to enforce consistency for sign(Φx) = ȳ,
the term λ‖(ȲΦu)−‖22 is added. Here, (t)− stands for |t|−t2
that only retains the negative values. Besides, Ȳ = diag(ȳ).
The approach of [5] for solving (8) is based on gradient
decent and the fixed point method. In [6], the reconstruction
is reformulated as

x∗ = arg min
u∈RN

‖(ȲΦu)−‖1 s.t. ‖u‖2 = 1, ‖u‖0 = K. (9)

To find the minimizer, a Binary Iterative Hard Thresholding
technique is proposed in [6]. In each iteration of IBHT, we
move in the direction of the gradient of ‖(ȲΦu)−‖1, and
then, project the result onto Σ∗K . While BIHT is a fast and
simple method, due to its greedy nature, it might not converge
to the optimal solution of (5).

The first computationally tractable method with provable
reconstruction guarantees was proposed in [7] by solving

x∗ = arg min
u∈RN

‖u‖1 s.t. ‖Φu‖1 = M, ȲΦu ≥ 0. (10)

Unlike RFPI and BHIT, the optimization problem (10) is
convex and can be cast as a linear programming problem.
However, the guaranteed performance of this method in [7]
requires high sample complexity of M = O(K logN

ε5 ).

III. THE PROPOSED ALGORITHM

A. Main Idea

In this paper, we introduce a new technique to solve
the problem in (5) without convex relation. Our technique
borrows some ideas from the smoothed `0-norm minimization
(S`0) which was first introduced in [10] for solving ((1));
therefore, we call out method One-Bit S`0. This approach is
based on approximating the `0 norm with a differentiable and
continuous function so that we can apply the gradient descent
method to find its minimizer. Consider a set of functions
Hδ : RN −→ R+ that approximate the `0-norm; here, δ
determines the approximation quality: the smaller the δ, the
better the Hδ as a substitute for the `0 norm. For the sake of
simplicity, we consider a separable form for Hδ as

Hδ(x) =

N∑
i=1

hδ(xi), (11)

where x = [x1, . . . , xN ]T ∈ RN , and

lim
δ→0

hδ(x) =

{
1, x 6= 0,
0, x = 0.

(12)

This property shows that

lim
δ→0

Hδ(x) = ‖x‖0. (13)

We further restrict Hδ by imposing conditions on hδ . The
point is to facilitate the convergence of the gradient descent
method in the minimization task.

Assumption 1. Let the one-dimensional function f : R −→
[0, 1] be such that

1) f is symmetric and unimodal,
2) f(x) = 1 ⇐⇒ x = 0,
3) f ′(0) = 0,
4) f ′′(0) < 0, and
5) lim|x|→∞ f(x) = 0.

Then, we say that the family {fδ}δ∈R+ with fδ(x) = f(xδ )
satisfies Assumption 1.

It is straightforward to conclude that if {fδ}δ∈R+ satisfies
Assumption 1, then, fδ converges to the Kronecker delta
function as δ −→ 0:

lim
δ→0

fδ(x) =

{
0, x 6= 0,
1, x = 0.

(14)

It is easy to check that the class of Gaussian functions

fσ(x) = exp(− x2

2δ2
) (15)

satisfies Assumption 1. Indeed, we use this class in this paper.
However, the same approach can be implemented using other
choices that satisfy Assumption 1.

If we define hδ(x) = 1− fδ(x), we have that

lim
δ→0

hδ(x) = 1− lim
δ→0

fδ(x) =

{
1, x 6= 0,
0, x = 0,

(16)

which establishes the `0-norm approximating property

‖x‖0 ≈
N∑
i=1

hδ(xi) = N −
N∑
i=1

fδ(xi) (17)

Now, the optimization problem in (5) can be smoothed as

x∗δ = arg min
u∈RN

N −
i=N∑
i=1

fδ(ui) s.t. ȳ = sign(Φu), ‖u‖2 = 1,

(18)

or equivalently, by defining Fδ : RN −→ R+ as Fδ(x) =∑i=N
i=1 fδ(xi), the problem (18) can be formulated as

x∗δ = arg max
u∈RN

Fδ(u) s.t. ȳ = sign(Φu), ‖u‖2 = 1. (19)

The differentiability of fδ , and in turn Fδ(u), allows us to
use the gradient ascent method to find a local maximizer of
(19), while it was not possible for the non-smooth cost in (5).
Nevertheless, the result of (19) depends on δ. As δ decreases,
Hδ provides a better approximation of ‖x‖0 while the non-
convexity of Fδ and the number of its local maxima increases.

The idea to avoid local maxima is to use a technique for
optimizing none-convex functions known as Graduate None-
Convexity (GNC) [10]. In this technique we use a sequence
δ1, δ2, ..., δL for the approximation parameters of the smoothed
functions. We initialize δ with large value δ1 so that Fδ
becomes convex. The maximizer of (19) with this choice is



Algorithm 1
1: Input:
2: Measurement Matrix Φ
3: Quatized measurements ȳ
4: The number external and internal loop iterations, I and J
5: Constance c for making decreasing sequence of δ
6: Step size µ
7: Output:
8: The sparse estimation x∗

9: procedure ONE-BIT S`0(Φ,ȳ,I ,J ,c,µ)
10: Initialize u0 by solving (20) for a random x̃ ∈ RN
11: for {i = 1, ..., I} do
12: δi = cδi−1

13: u0
δi

= uJδi−1

14: for {j = 1, ..., J} do
15: ûjδi = uj−1

δi
− µ

2
[x1 exp(− x21

2δ2i
), ..., xN exp(− x2N

2δ2i
)]T

16: ūjδi = arg min
ū
j
δi
∈RN

‖ūjδi − ûjδi‖
2
2 s.t. ȲΦūjδi ≥ 0

17: ujδi =
ū
j
δi

‖ūj
δi
‖2

18: end for
19: end for
20: return uJδI
21: end procedure

xδ1 . Next, we gradually decrease δ to δi (i > 1) to improve
the approximation of ‖x‖0 in (19). For each δi, we initialize
the maximization problem of Fδi with the maximizer of (19)
for δi−1 ( i.e., xδi−1 ) and obtain xδi . As we gradually shift
from a convex problem to a non-convex problem, the method
might succeed in avoiding the local maxima.

B. Gradient Projection

For each δ, we apply the Gradient Projection [11] method
to solve (19). In each iteration of GP, the direction of gradient
ascent is projected back onto the feasible set determined by
constraints in (19). Mathematically, if x̃ = x + µj∇Fδi(x),
the projection onto the feasible set is achieved by

x = arg min
u∈RN

‖u− x̃‖22 s.t. ȲΦu ≥ 0, ‖u‖2 = 1. (20)

Unfortunately, (20) is a non-convex problem. Instead, we drop
the constraint ‖u‖2 = 1 to achieve convex relaxation as

x = arg min
u∈RN

‖u− x̃‖22 s.t. ȲΦu ≥ 0 (21)

We solve (21), and then, apply the constraint ‖u‖2 = 1 by
projecting the outcome onto the unit ball.

For the completion of the GP method, we have to derive
the gradient of Fδ(x) with respect to x, which is

∇Fδ(x) = − 1

2δ2
[
x1 exp(− x2

1

2δ2 ), ..., xN exp(− x2
N

2δ2 )
]T

(22)

C. Initialization

As explained earlier, we initialize the algorithm with a large
δ value. Since fδ satisfies Assumption 1, for δ � 1 we can

write that

Fδ(x) =

N∑
i=1

fδ(xi) ≈
N∑
i=1

(1 + f ′′(0)
x2
i

δ2 ) = N + γ
δ2 ‖x‖

2
2,

(23)

where we used a Taylor series representation of fδ(x) and
neglected the higher order terms. Here γ stands for f ′′(0). As
‖x‖2 = 1 in our feasible set, the initialization of the algorithm
becomes the answer to the following problem:

x = arg min
u∈RN

N +
γ

δ2
s.t. ȲΦu ≥ 0, ‖u‖2 = 1, (24)

which is simply any x0 ∈ RN in the feasible set. Alternatively,
x0 can be set as the solution to (20) for any random x̃ ∈ RN .

D. The Final Algorithm

A formal description of the One-Bit S`0 is provided in
Algorithm 1 which consists of two loops. The external loop
is designed to iterate over δi for using the GNC method. The
internal loop is aimed for finding the maximizer of Fδ(u)
using the GP technique. In the following, based on Theorem
1, we assume a sample complexity of M = O(K logN

ε ) for
the proposed Algorithm 1.

Remark 1. The decreasing sequence of δ can be set as δi =
c(i−1)δi−1 for i > 1. δ0 should be chosen large enough so that
it behaves like ∞. As x0 is bound to be on the unit sphere,

we have that ‖x0‖∞ ≤ 1; therefore, exp(
x2
0i

2δ20
) ≥ exp( 1

2δ20
). By

setting δ0 = 5, we have that exp( 1
2δ20

) = exp( 1
50 ) > 0.98 ≈ 1.

Hence, δ0 = 5 is roughly a good initialization choice.

Remark 2. In the gradient ascent method, µi should be chosen
small enough in order to prevent the algorithm from divergence
caused by the variation of Fδi(x) with respect to the variation
of x. As δi decreases in the external loop of the algorithm,
the variation of the function Fδi(x) grow larger. Consequently,
a smaller µi should be used. A suitable choice that is well
adapted to the behavior of Fδi(x) with respect to δi is µi =
δ2i µ, where µ is a constant given by user. As a result, the
gradient ascent of the algorithm simplifies to

ujδi = uj−1δi
− µ

2
[x1 exp(− x2

1

2δ2i
), ..., xN exp(− x2

N

2δ2i
)]T (25)

IV. CONVERGENCE ANALYSIS

In this section, we discuss the convergence of our algorithm.
Note that in the procedure of the algorithm, we use a decreas-
ing sequence of δ in the external loop to gradually create a
good approximation of ‖x‖0 and each δ results in xδ . For the
convergence analysis, we assume that each xδ is the global
maximizer of the Fδ(x) and the gradient ascent algorithm in
the internal loop has not been trapped in the local maxima.
Assume that x∗ ∈ ΣK is the solution of the original problem
(5) and x̂ is the solution of (19) for δ −→ 0. As xδ is the
global maximizer of (19), we have

lim
δ→0

Fδ(x̂) ≥ lim
δ→0

Fδ(x
∗) (26)



2 4 6 8 10 12 14 16 18 20

Sparsity

5

10

15

20

25

30

35

40

45

S
N

R

N = 512 , M = 256

Plan2013A

IBHT

RFPI

OneBitSl0

(a)

0 200 400 600 800 1000 1200

Number of Measurements

0

5

10

15

20

25

30

35

40

45

S
N

R

N = 512 , K = 4

Plan2013A

IBHT

RFPI

OneBitSl0

(b)

Fig. 1: SNR values for different methods, number of measure-
ments and sparsity levels

By considering the definition of Fδ(x)

N − ‖x̂‖0 ≥ N − ‖x∗‖0 ⇒ ‖x̂‖0 ≤ ‖x∗‖0 = K (27)

Since x∗ is the solution of (5), any x in the feasible set has a
sparsity more than K. As a result

‖x̂‖0 ≥ K (28)

Combining (27) and (28), we will have

‖x̂‖0 = K (29)

Based on the above conclusion, x̂ ∈ ΣK and it is in the
feasible set, as it is the solution of (19) and satisfies the
constraint. As a result, x̂ is the solution of original problem
(5) by definition.

V. NUMERICAL EXPERIMENTS

In this section, the performance of the One-Bit S`0 is
evaluated empirically through simulation, and is compared
to RFPI [5], IBHT [6] and Plan2013A [7] algorithms. The
perfomance of the algorithms are compared by calculating
SNR = 20 log( ‖x‖2

‖x−x∗‖2 ), where x∗ is the output of algorithms
as the estimation of x. For the first experiment, We have
generated measurement matrix Φ ∈ N 256×512(0, 1) and for

different sparsity levels 2 ≤ K ≤ 20. The results of this
experiments is shown at Fig.1a.

In the second experiment, we have fixed N = 256
and K = 4 and we have generated different measurement
matrix Φ ∈ NM×256(0, 1) for number of measurements
M = [64, 128, 256, 512, 1024].The results of this experiments
is shown at Fig.1b.

The reported SNR is the mean of calculated SNR for the
algorithms over 100 randomly generated signals of x for each
sparsity level in Fig.1a and each number of measurements in
Fig.1b. In both experiments; our algorithm outperforms the
state-of-the-art algorithms regarding reconstruction SNR.

VI. CONCLUSION

In this paper, we propose a new approach to recover a sparse
vector from a set of one-bit quantized linear measurements
by using a soft measure of `0 norm through maximizing
a non-convex function as an estimation of `0 norm which
requires M = O(K logN

ε ) measurements. In the numerical
experiments, we illustrated that our method surpasses existing
state-of-the-art methods in terms of SNR.
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