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Abstract—Thomson’s multitaper method using discrete prolate
spheroidal sequences (DPSSs) is a widely used technique for
spectral estimation. For a signal of length N , Thomson’s method
requires selecting a bandwidth parameter W , and then uses
K ≈ 2NW tapers. The computational cost of evaluating the
multitaper estimate at N grid frequencies is O(KN logN). It
has been shown that the choice of W and K which minimizes
the MSE of the multitaper estimate is W = O(N−1/5) and
K = O(N4/5). This choice would require a computational cost
of O(N9/5 logN). We demonstrate an ε-approximation to the
multitaper estimate which can be evaluated at N grid frequencies
using O(N log2N log 1

ε
) operations.

I. INTRODUCTION

Let x(t), t ∈ R be a stationary, ergodic, zero-mean, Gaus-
sian stochastic process. The Cramer representation of x(t) is
given by

x(t) =

∫ 1/2

−1/2

ej2πft dZ(f),

and the spectral density of x(t) is given by

S(f) df = E
[
| dZ(f)|2

]
.

The problem of spectral estimation is to estimate S(f) from
N equally spaced samples

x =
[
x(0) x(1) · · · x(N − 1)

]T ∈ CN .

Thomson’s multitaper method for spectral estimation [7]
can be described as follows. For a given half-bandwidth
parameter W ∈ (0, 1

2 ), we define the Slepian basis vectors
s0, s1, . . . , sN−1 ∈ RN as the orthonormal eigenvectors of
the N ×N prolate matrix B, whose entries are given by1

B[m,n] =
sin[2πW (m− n)]

π(m− n)
for m,n ∈ [N ].

The eigenvectors are ordered such that corresponding eigen-
values λ0 > λ1 > · · · > λN−1 are sorted in descending order.
For each k ∈ [N ], we can use sk as a taper to define a single
tapered spectral estimate Ŝk(f), i.e.,

Ŝk(f) =

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Then, we pick an integer K and define the unweighted
multitaper spectral estimate of x as

Ŝmt
K (f) =

1

K

K−1∑
k=0

Ŝk(f).

1For any integer N , we define [N ] := {n ∈ Z : 0 ≤ n < N − 1}.

Since the first slightly less than 2NW Slepian basis vectors
have spectra concentrated in [−W,W ], the number of tapers
K is usually chosen to be slightly less than 2NW . Thompson
also considered the eigenvalue weighted multitaper spectral
estimate [7]

Ŝeig
K (f) =

K−1∑
k=0

λkŜk(f)

K−1∑
k=0

λk

.

In many applications, it is desirable to estimate the spectrum
on a grid of N evenly spaced frequencies, i.e., f = m

N

for m ∈ [N ]. For each k ∈ [K], evaluating Ŝk(f) at
all N grid frequencies takes O(N logN) operations via a
length-N FFT of the elementwise product sk ◦ x. After
this, only O(KN) more operations are needed to evalu-
ate the weighted/unweighted sum at all N grid frequen-
cies. Hence, the total computation required to evaluate either
Ŝmt
K (f) or Ŝeig

K (f) at the N grid frequencies can be done
in O(KN logN) operations. Also, the cost of precomputing
the tapers s0, . . . , sK−1 is O(KN logN) operations. This
is due to the fact that there is a tridiagonal matrix T with
the same eigenvectors s0, s1, . . . , sN−1 as B and similarly
ordered eigenvalues µ0 > µ1 > · · · > µN−1 [6].

In [8], it is shown that if S(f) is twice differentiable, then
bias and variance of Ŝmt

K (f) are bounded by

Bias
(
Ŝmt
K (f)

)
.
W 2

6
S′′(f),

Var
(
Ŝmt
K (f)

)
.

1

K
S(f)2,

and thus, the mean-squared error is bounded by

MSE
(
Ŝmt
K (f)

)
.
W 4

36
S′′(f)2 +

1

K
S(f)2.

Since K ≈ 2NW , this bound is minimized when

W ∼
[

9S(f)

2S′′(f)

]2/5

N−1/5 and K ∼
[

12S(f)

S′′(f)

]2/5

N4/5.

Similar analysis is done in [5] for sinusoidal tapers and in [1]
for Slepian tapers. In general, fewer tapers are used for more
rapidly varying spectra, but for any fixed spectrum S(f) and
for large N , the optimal number of tapers is K = O(N4/5).
However, this choice requires precomputing O(N4/5) tapers
and then O(N4/5) length-N FFTs to evaluate Ŝ(·)

K (f) at all
N grid frequencies. This involves O(N9/5 logN) operations.



In this work, we present approximations S̃mt
K (f) and S̃eig

K (f)

to Ŝmt
K (f) and Ŝeig

K (f) respectively which satisfy∣∣∣Ŝ(·)
K (f)− S̃(·)

K (f)
∣∣∣ ≤ O(ε)

K
‖x‖22 for all f ∈ R,

and which can be evaluated at all grid frequencies in
O(N log2N log 1

ε ) operations. Also, the required precompu-
tation for these approximations takes only O(N log2N log 1

ε )
operations. When the number of tapers is K & logN log 1

ε ,
evaluating S̃

(·)
K (f) at the N grid frequencies will be signifi-

cantly faster than evaluating Ŝ(·)
K (f) at the N grid frequencies.

II. INTERMEDIATE RESULTS

A. Fast algorithm for computing Ŝeig
N (f)

To begin developing our fast approximations for Ŝmt
K (f) and

Ŝeig
K (f), we first consider the eigenvalue weighted multitaper

spectral estimate with N tapers instead of K ≈ 2NW , i.e.,2

Ŝeig
N (f) =

1

2NW

N−1∑
k=0

λkŜk(f).

Using an eigendecomposition, we can write B = SΛS∗,
where S =

[
s0 · · · sN−1

]
and Λ = diag(λ0, . . . , λN−1).

For any f ∈ R, we let Ef ∈ CN×N be a diagonal matrix with
diagonal entries Ef [n, n] = ej2πfn. Then, Ŝeig

N (f) satisfies

2NW Ŝeig
N (f) =

N−1∑
k=0

λkŜk(f)

=

N−1∑
k=0

λk

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

=

N−1∑
k=0

λk
∣∣s∗kE∗fx∣∣2

= x∗EfSΛS∗E∗fx

= x∗EfBE∗fx.

This gives us a a formula for Ŝeig
N (f) which does not require

computing any of the Slepian tapers. Furthermore, we state a
formula that allows us to evaluate Ŝeig

N (mN ) for all m ∈ [N ] in
O(N logN) operations.

First we define a vector of sinc samples

b[`] =


sin[2πW`]

π`
` ∈ [N ],

0 ` = N,
sin[2πW (2N − `)]

π(2N − `)
` ∈ [2N ] \ [N + 1],

a zeropadding matrix

Z =

[
IN×N
0N×N

]
,

a length-2N FFT matrix defined by

F [m,n] = e−jπmn/N for m,n ∈ [2N ],

2Here, we have used the fact that
∑N−1
k=0 λk = trB = 2NW .

and a vector

y = F−1
(
b ◦ F |FZx|2

)
,

where we use the notation ◦ to be the elementwise product,
i.e., (p ◦ q)[`] = p[`]q[`], and | |2 to denote the elementwise
magnitude-squared, i.e., (|p|2)[`] = |p[`]|2.

With these definitions, we have Ŝeig
N (mN ) = 1

2NW y[2m] for
all m ∈ [N ]. The derivation of this formula involves exploiting
the fact that B is a Toeplitz matrix, and thus, can be extended
to a circulant matrix which is diagonalized by F . Due to
page limitations, the proof of this formula is deferred to a
future publication. Computing y = F−1

(
b ◦ F |FZx|2

)
can

be done in O(N logN) operations via three length-2N FFTs
and a few pointwise multiplications of length-2N vectors.
Then, we can obtain Ŝeig

N (mN ) = 1
2NW y[2m] for m ∈ [N ]

by downsampling and scaling z.

B. Approximations for General Multitaper Spectral Estimates
Next, we present a lemma regarding approximations to

spectral estimates which use orthonormal tapers.

Lemma 1. Let x ∈ CN be a vector of N equispaced samples,
and let {vk}N−1

k=0 be any orthonormal set of tapers in CN . For
each k ∈ [N ], define a tapered spectral estimate

Vk(f) =

∣∣∣∣∣
N−1∑
n=0

vk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Also, let {γk}N−1
k=0 and {γ̃k}N−1

k=0 be real coefficients, and then
define a multitaper spectral estimate V̂ (f) and an approxima-
tion Ṽ (f) by

V̂ (f) =

N−1∑
k=0

γkVk(f) and Ṽ (f) =

N−1∑
k=0

γ̃kVk(f).

Then, for any frequency f ∈ R, we have∣∣∣V̂ (f)− Ṽ (f)
∣∣∣ ≤ (max

k
|γk − γ̃k|

)
‖x‖22.

Proof. Let V =
[
v0 · · · vN−1

]
, and let Γ, Γ̃ ∈ RN×N ,

and Ef ∈ CN×N be diagonal matrices whose diagonal entries
are Γ[n, n] = γn, Γ̃[n, n] = γ̃n, and Ef [n, n] = ej2πfn for
n ∈ [N ]. Then, using a similar argument as used to show that
2NW Ŝeig

N (f) = x∗EfBE∗fx, one can show that

V̂ (f) = x∗EfV ΓV ∗E∗fx

and
Ṽ (f) = x∗EfV Γ̃V ∗E∗fx.

Since V is orthonormal, ‖V ‖ = ‖V ∗‖ = 1. Since Ef is
diagonal, and all the diagonal entries have modulus 1, ‖Ef‖ =
‖E∗f‖ = 1. Hence, for any f ∈ R, we can bound∣∣∣V̂ (f)− Ṽ (f)

∣∣∣ =
∣∣∣x∗EfV

(
Γ− Γ̃

)
V ∗E∗fx

∣∣∣
≤ ‖x‖2‖Ef‖‖V ‖‖Γ− Γ̃‖‖V ∗‖‖E∗f‖‖x‖2

=

(
max
k
|γk − γ̃k|

)
‖x‖22,

as desired.
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C. Prolate matrix eigenvalue behavior
The eigenvalues λ0 > λ1 > · · · > λN−1 of B are all

strictly between 0 and 1, and they have a clustering behavior.
For fixed W ∈ (0, 1

2 ) and ε ∈ (0, 1
2 ) and large N , slightly less

than 2NW eigenvalues are between 1− ε and 1, slightly less
than N − 2NW eigenvalues are between 0 and ε, and very
few eigenvalues are between ε and 1 − ε. In [3], it is shown
that for fixed W ∈ (0, 1

2 ) and ε ∈ (0, 1
2 ),

# {k : ε < λk < 1− ε} ∼ 2

π2
logN log

(
1

ε
− 1

)
as N →∞. Also, for any N ∈ N, W ∈ (0, 1

2 ) and ε ∈ (0, 1
2 ),

# {k : ε < λk < 1− ε} ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
.

We assume that for a given N ∈ N and W ∈ (0, 1
2 ), the

parameters K and ε ∈ (0, 1
2 ) are chosen such that λK−1 ≥ 1

2
and λK ≤ 1− ε. This restriction only forces K to be slightly
less than 2NW . We partition the indices [N ] into four sets

I1 = {k ∈ [K] : λk ≥ 1− ε},
I2 = {k ∈ [K] : ε < λk < 1− ε},
I3 = {k ∈ [N ] \ [K] : ε < λk < 1− ε},
I4 = {k ∈ [N ] \ [K] : λk ≤ ε}.

In the following subsections, we will assume that we have
precomputed λk and sk for all k ∈ I2∪I3, but not necessarily
for any k ∈ I1 ∪ I4. This can be done in O(N log2N log 1

ε )
operations as follows. First, bound the “transition region”
by I2 ∪ I3 ⊆ [d2NW e+ r] \ [b2NW c − r] =: I where
#(I2 ∪ I3) ≤ r = O(logN log 1

ε ). Then, use a bisection
and inverse iteration algorithm [2] on the tridiagonal matrix T
from [6] which has the same eigenvectors s0, s1, . . . , sN−1 as
B and similarly ordered eigenvalues µ0 > µ1 > · · · > µN−1.
Only µk and sk for k ∈ I need to be computed, so this takes
O(2rN) = O(N logN log 1

ε ) operations. Finally, for each
k ∈ I, compute λk = s∗kBsk. This takes O(2rN logN) =
O(N log2N log 1

ε ) operations since B is Toeplitz.

III. FAST APPROXIMATIONS

A. Fast algorithm for approximating Ŝmt
K (f)

The unweighted multitaper spectral estimate Ŝmt
K (f) is given

by

Ŝmt
K (f) =

1

K

K−1∑
k=0

Ŝk(f) =
∑

k∈I1∪I2

1

K
Ŝk(f).

We then define an approximation by

S̃mt
K (f) :=

2NW

K
Ŝeig
N (f) +

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

=

N−1∑
k=0

λk
K
Ŝk(f) +

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

=
∑

k∈I1∪I4

λk
K
Ŝk(f) +

∑
k∈I2

1

K
Ŝk(f)

Thus, Ŝmt
K (f) and S̃mt

K (f) can be written as

Ŝmt
K (f) =

N−1∑
k=0

γmt
k Ŝk(f) and S̃mt

K (f) =

N−1∑
k=0

γ̃mt
k Ŝk(f)

where

γmt
k =

{
1
K k ∈ I1 ∪ I2,

0 k ∈ I3 ∪ I4,
and γ̃mt

k =


λk

K k ∈ I1 ∪ I4,
1
K k ∈ I2,

0 k ∈ I3.

We now consider gapmt
k := |γmt

k − γ̃mt
k |. For k ∈ I1, we have

λk ≥ 1− ε, and thus,

gapmt
k =

∣∣∣∣ 1

K
− λk
K

∣∣∣∣ =
1− λk
K

≤ ε

K
.

For k ∈ I2 ∪ I3 we have γmt
k = γ̃mt

k , i.e., gapmt
k = 0. For

k ∈ I4, we have λk ≤ ε, and thus,

gapmt
k =

∣∣∣∣0− λk
K

∣∣∣∣ =
λk
K
≤ ε

K
.

Hence, gapmt
k ≤

ε
K for all k ∈ [N ], and thus by Lemma 1,∣∣∣Ŝmt
K (f)− S̃mt

K (f)
∣∣∣ ≤ ε

K
‖x‖22.

Finally, evaluating the approximation

S̃mt
K (f) :=

2NW

K
Ŝeig
N (f)+

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

at the N grid frequencies requires evaluating Ŝeig
N (f) and

Ŝk(f) for all k ∈ I2∪I3 at the N grid frequencies. Evaluating
Ŝeig
N (f) at the grid frequencies takes O(N logN) operations,

as shown in Section II-A. For each k ∈ I2 ∪ I3, evaluating
Ŝk(f) at the grid frequencies takes O(N logN) operations.
Since #(I2 ∪ I3) = O(logN log 1

ε ), the total computation
required is O(N log2N log 1

ε ) operations.

B. Fast algorithm for approximating Ŝeig
K (f)

The eigenvalue weighted multitaper spectral estimate
Ŝeig
K (f) is given by:

Ŝeig
K (f) =

K−1∑
k=0

λkŜk(f)

K−1∑
k=0

λk

=
∑

k∈I1∪I2

λk
ΣK

Ŝk(f),

where

ΣK :=

K−1∑
k=0

λk =
∑
k∈I1

λk +
∑
k∈I2

λk.

We then define an approximation by

S̃eig
K (f) : =

2NW

Σ̃K
Ŝeig
N (f)− 1

Σ̃K

∑
k∈I3

λkŜk(f)

=
1

Σ̃K

N−1∑
k=0

λkŜk(f)− 1

Σ̃K

∑
k∈I3

λkŜk(f)

=
∑
k 6∈I3

λk

Σ̃K
Ŝk(f)

3



where

Σ̃K := K −
∑
k∈I2

(1− λk) =
∑
k∈I1

1 +
∑
k∈I2

λk.

Thus, Ŝeig
K (f) and S̃eig

K (f) can be written as

Ŝeig
K (f) =

N−1∑
k=0

γeig
k Ŝk(f) and S̃eig

K (f) =

N−1∑
k=0

γ̃eig
k Ŝk(f)

where

γeig
k =

{
λk

ΣK
k ∈ I1 ∪ I2,

0 k ∈ I3 ∪ I4,
and γ̃eig

k =

{
λk

Σ̃K
k 6∈ I3,

0 k ∈ I3.
.

To bound gapeig
k := |γeig

k − γ̃
eig
k |, we first note that

0 ≤ Σ̃K − ΣK =
∑
k∈I1

(1− λk) ≤ ε#(I1) ≤ Kε,

and

Σ̃K ≥ ΣK =
K−1∑
k=0

λk ≥
K−1∑
k=0

λK−1 = KλK−1 ≥
K

2
.

For k ∈ I1 ∪ I2, we have 0 ≤ λk ≤ 1, and thus,

gapeig
k =

∣∣∣∣ λkΣK
− λk

Σ̃K

∣∣∣∣ =
λk(Σ̃K − ΣK)

Σ̃KΣK
≤ 1 ·Kε

(K2 )2
≤ 4ε

K
.

For k ∈ I3 we have γeig
k = γ̃eig

k = 0, i.e., gapeig
k = 0. For

k ∈ I4, we have λk ≤ ε, and thus,

gapeig
k =

∣∣∣∣0− λk

Σ̃K

∣∣∣∣ =
λk

Σ̃K
≤ ε

K
2

=
2ε

K
≤ 4ε

K
.

Hence, gapeig
k ≤

4ε
K for all k ∈ [N ], and thus by Lemma 1,∣∣∣Ŝeig
K (f)− S̃eig

K (f)
∣∣∣ ≤ 4ε

K
‖x‖22.

Finally, evaluating the approximation

S̃eig
K (f) :=

2NW

Σ̃K
Ŝeig
N (f)− 1

Σ̃K

∑
k∈I3

λkŜk(f)

at the N grid frequencies can be done in O(N log2N log 1
ε )

operations in a similar manner as can be done for S̃mt
K (f).

IV. SIMULATIONS

To test our fast method for multitaper spectral estimation,
we first generate N = 220 samples of an ARMA(12, 8) pro-
cess. We then try the following methods of spectral estimation:

1) Thomson’s unweighted multitaper method with W =
3.6× 10−5 (2NW ≈ 75.5), and K = 63 tapers.

2) Our fast approximation to Thomson’s unweighted multi-
taper method with W = 2.7 × 10−3 (2NW ≈ 5662.3),
K = 5641 tapers, and an approximation parameter of
ε = 10−12.

Note that for both methods, the number of tapers K was
chosen such that λK−1 > 1 − 10−9 > λK , which severely
reduces the broadband bias of the tapered estimates. This
is necessary due to the high dynamic range of the true

Fig. 1. Plots of the spectrum of the ARMA(12, 8) process, and the errors
(in dB) of the two spectral estimates.

spectrum. For the first method, the half-bandwidth parameter
W = 2.7×10−3 was chosen according to the optimal number
of tapers suggested in [8]. For the second method, the half-
bandwidth parameter W = 3.6 × 10−5 was chosen so that
both methods run in a comparable amount of time.

A plot the exact power spectrum of the ARMA(12, 8)
process and the errors of the estimated spectra are shown
in Figure 1. The precomputation time, run time, and root-
mean-squared-logarithmic errors are shown in the table below.
Both methods run in approximately the same amount of time
due to the fact that our fast approximation only needed to
compute #(I2 ∪ I3) = 56 Slepian tapers. However, the fast
approximation has greater accuracy due to the fact that it
approximates a multitaper estimate with K = 5641 tapers.

Method Precomputation time Time RMSLE
1 28.15 s 2.989 s 0.5498 dB
2 25.33 s 2.932 s 0.1602 dB
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