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Abstract—We investigate the applicability of Gabor multipliers
as compressive measurements. Specifically, we show that the
canonical M × N matrix representation of a Gabor multiplier
from C

N to C
M is full spark for almost all windows and

multiplier symbol vectors with respect to the Lebesgue measure,
provided that the length Q of the multiplier symbol vector
satisfies Q ≥ N+M−1. Hence, if used as a measurement matrix
in compressive sensing, M ≥ 2S guarantees perfect recovery
of all S-sparse vectors by means of ℓ0-minimization for almost
all such Gabor multipliers. Furthermore, for ℓ1-minimization,
we demonstrate via simulations that Gabor multipliers with
randomly chosen symbol vector have excellent capabilities in
recovering sparse signals.

I. INTRODUCTION

Compressive sensing (CS) has been one of the major devel-

opments in applied mathematics in the past 15 years [1]–[3]. It

considers the recovery of (approximately) sparse vectors from

incomplete and possibly perturbed linear measurements via

efficient algorithms such as ℓ1-minimization. Provably optimal

bounds for the minimal number of required measurements

in terms of the sparsity have been shown for Gaussian and,

more generally, subgaussian random matrices [2]–[7]. Prac-

tical applications demand for structure in the measurement

process which is obviously not present in Gaussian random

matrices with independent entries. Several types of structured

random matrices have been studied, including random partial

Fourier matrices [1], [3], [6], partial random circulant matrices

(subsampled random convolutions) [8]–[12], time-frequency

structured random matrices [11], [13], [14], and a few more

[15], [16].

Clearly, there is large interest in extending CS results to

other classes of structured measurements, especially to those

relevant for real-world applications. The present contribution

aims to make a step towards this direction. In particular, we

investigate the applicability of random Gabor multipliers as CS

measurements both from a theoretical and practical viewpoint,

thereby, extending the random filtering methods of [8] to the

time-frequency case. Note that the interest in the consider-

ation of multipliers has its origins in applications. In signal
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processing many methods employ linear time-invariant filters,

i.e., convolution operators, which can be described as Fourier

multipliers [17]. Gabor multipliers [18] are a particular option

to represent time-varying filters. They have many applications,

for example in acoustical signal processing [19], [20] and

sparse time-frequency analysis [21].

A. Notation

Roman letters A,B, . . ., a, b, . . ., and a, b, . . . designate

deterministic matrices (operators1), vectors, and scalars, re-

spectively. Boldface letters A,B, . . ., a,b, . . ., and a, b, . . .
denote random matrices (operators), random vectors, and

random scalars, respectively. The ith component of the vector

u (random vector u) is ui−1 (ui−1). The superscripts T

and H stand for transposition and Hermitian transposition,

respectively. The identity matrix of suitable size is denoted

by I. For a vector u, we write supp(u) for its support. For

the Euclidean space (CN , ‖ · ‖2), we denote the open ball of

radius r centered at u ∈ CN by BN(u, r). For a set S, card(S)
denotes its cardinality. We use the notation AS to indicate the

column submatrix of A consisting of the columns indexed by

S. Similarly, for x ∈ CN we denote by xS the subvector in

Ccard(S) consisting of the entries of x indexed by S.

B. Compressive Sensing

In general, reconstruction of x = (x0, . . . , xN−1)
T ∈ CN

from measurements
y = Ax, (1)

where A ∈ CM×N and M ≪ N , is impossible without

substantial a priori information about x. In compressive

sensing the assumption that x is S-sparse, that is, ‖x‖0 ,

card(supp(x)) ≤ S for some S ≪ N , is introduced to

guarantee uniqueness and efficient recoverability of x. An

estimate x̃ of the sparse vector x can be obtained by means

of solving the ℓ0-minimization problem,

(P0) x̃ = arg min
z

‖z‖0 subject to y = Az.

This means, we search for the sparsest vector consistent with

the measured data y = Ax. Unfortunately, ℓ0-minimization

is NP-hard in general. Consequently, a number of alternatives,

1For notational simplicity, we do not distinguish between operators and
their matrix representation with respect to the canonical basis throughout the
paper.



for example, greedy algorithms [3], have been proposed in the

literature. The most popular approach utilizes ℓ1–minimization

[1], [2], [22], that is, the convex program

(P1) x̃ = arg min
z

‖z‖1 subject to y = Az

is solved, where ‖z‖1 = |z0|+ |z1|+ . . .+ |zN−1| denotes the

usual ℓ1 vector norm.

Whether the estimate x̃ obtained by programs (P0) or (P1)

coincides with the true solution x in (1), depends on the

properties of the so-called measurement matrix A. It is rather

elementary to show [3] that x̃ obtained by (P0) satisfies x̃ = x
for all S-sparse x, if every set of 2S columns of A is linearly

independent. To guarantee recoverability of the sparse vector

x in (1) by means of program (P1) and greedy algorithms, it

suffices to establish the restricted isometry property (RIP) of A
[3]. Moreover, the RIP usually implies robustness with respect

to noise and ensures that the algorithms produce reliable

results not only for perfectly sparse but also for approximately

sparse vectors x.

II. GABOR SYSTEMS AND GABOR MULTIPLIERS

A. Gabor Systems

Let us define the following two linear operators on CN : the

cyclic shift or translation operator T : CN → CN , which is

given by

x = (x0, . . . , xN−1)
T 7→ Tx = (xN−1, x0, . . . , xN−2)

T

and the modulation or frequency shift operator M : CN → CN ,

which is given by

x = (x0, . . . , xN−1)
T 7→ Mx = (x0, ωx1, . . . , ω

N−1xN−1)
T,

where ω = e2πi/N . The operators π(λ) , MlTk, λ = (k, l),
are called time-frequency shift operators. The collection of

vectors

(g,Λ) , {π(λ)g : λ ∈ Λ}, where Λ ⊆ ZN × ZN

with ZN , {0, 1, . . . , N−1}, is denoted as Gabor system with

window g. If Λ = ZN ×ZN , (g,Λ) is called full Gabor system

with window g. The number R , card(Λ)/N is referred to

as redundancy of the Gabor system.

Gabor systems exhibit very rich structural properties. One

of these properties (see Theorem 1) will turn out to be

instrumental for our investigation of Gabor multipliers in CS.

To that end, we need the following definition.

Definition 1. A family F of card(F) ≥ N vectors in C
N is

denoted as full spark (cf. [23])—also known as Haar property

(cf. [24])—if any subset F ′ ⊆ F with card(F ′) = N is

linearly independent.

The following theorem was first proven in [25] for N prime

and later generalized to all positive integers N ∈ N in [26].

Theorem 1. For every positive integer N , there is some

window g ∈ CN , such that for all Λ ⊆ ZN × ZN with

card(Λ) ≥ N the Gabor systems (g,Λ) are full spark.

Moreover, the set of such windows g is of full measure, i.e.,

its complement has N -dimensional Lebesgue measure zero.

B. Gabor Multipliers

Suppose N ≥ M and let (g(1),Λ(1)) and (g(2),Λ(2)) denote

two Gabor systems on CN and CM , respectively, i.e., g(1) ∈
CN , Λ(1) ⊆ ZN × ZN , g(2) ∈ CM , and Λ(2) ⊆ ZM × ZM .

We further assume that card(Λ(1)) = card(Λ(2)) ≥ N , which

also implies that the redundancies of the two Gabor systems

satisfy R(2) ≥ R(1) ≥ 1 as well as that N ≤ M2, i.e., N
cannot be arbitrarily large for fixed M . Furthermore, let the

elements of both sets Λ(1) and Λ(2) be equipped with some

orderings, so that we can write

Λ(1) = {λ
(1)
0 , . . . , λ

(1)
Q−1} and Λ(2) = {λ

(2)
0 , . . . , λ

(2)
Q−1},

where Q , card(Λ(1)) = card(Λ(2)). The orderings are

assumed to be arbitrary but fixed.

A Gabor multiplier is an operator Gm,g(2),g(1) : CN → CM

defined as2

x 7→ Gm,g(2),g(1)x =

Q−1
∑

q=0

mq

〈

x, π
(

λ(1)
q

)

g(1)
〉

π
(

λ(2)
q

)

g(2)

with associated symbol m = (m0, . . . , mQ−1)
T ∈ CQ.

Remark 1. We note that most definitions of Gabor multipliers

restrict to the case N = M and Λ(1) = Λ(2) with identical

orderings, which seems rather natural in order to preserve the

time-frequency structure induced by the two Gabor systems.

On the other hand, as outlined above, we are interested

in using Gabor multipliers (or, more precisely, their matrix

representations) as CS measurement matrices, which typically

requires M ≪ N .

Remark 2. As an alternative way3 of using Gabor multipliers

for CS, one could first apply a “conventional” (time-frequency

structure preserving) Gabor multiplier Gm,g(2),g(1) : CN →
CN as in Remark 1 and, subsequently, reduce the dimen-

sion by subsampling the N -dimensional (time-domain) output

vector of the Gabor multiplier. More formally, for a subset

Ω ⊆ {0, . . . , N − 1} of cardinality M , let PΩ : CN → CM ,

x 7→ xΩ be the operator that restricts a vector to the entries

indexed by Ω. Then, the overall CS measurement matrix would

be expressed as

A = PΩGm,g(2),g(1) ∈ C
M×N ,

and, furthermore,

Ax =

Q−1
∑

q=0

mq

〈

x, π
(

λq

)

g(1)
〉

PΩπ
(

λq

)

g(2). (2)

In the following, let us assume regular subsampling, i.e., M =
N/τ with an integer τ ≥ 2 and Ω = {τm : m = 0, . . . ,M −
1}. We have, cf. (2),

PΩπ
(

λq

)

g(2) = PΩM
lq
NT

kq

N g(2) for some (kq, lq) = λq,

where we have added the subscript N to modulation operator

M and translation operator T, respectively, in order to em-

2Such an operator can also be defined for other systems [27].
3Based on this approach, random convolutions were investigated as CS

measurements and corresponding performances guarantees were established
[8]–[12].



phasize their dependence on the dimension. Suppose kq is a

multiple of τ . Then,

PΩπ
(

λq

)

g(2) = M
lq
MPΩT

kq

N g(2)

= M
lq
MT

kq/τ
M PΩg

(2)

= π
(

(kq/τ, lq)
)

g
(2)
Ω .

Therefore, if Λ(1) = Λ(2) = {(k0, l0), . . . , (kQ−1, lQ−1)} is

such that kq is a multiple of τ for all q = 0, . . . , Q − 1, we

can define a new Gabor system (g̃(2), Λ̃(2)) with

g̃(2) , g
(2)
Ω ∈ C

M and

Λ̃(2) , {(k0/τ, l0), . . . , (kQ−1/τ, lQ−1)},

for which we have

A = PΩGm,g(2),g(1) = Gm,g̃(2),g(1) .

Hence, regular subsampling of a “conventional” Gabor mul-

tiplier is included in our general Gabor multiplier definition

with N ≥ M , provided that the “conventional” Gabor system

is compatible with the chosen subsampling.

III. MAIN RESULTS

Consider a Gabor multiplier defined as in Subsection

II-B and additionally assume that the windows g(1) ∈ CN

and g(2) ∈ CM are chosen such that both Gabor systems

(g(1),Λ(1)) and (g(2),Λ(2)) are full spark, cf. Definition 1.

According to Theorem 1, Lebesgue almost all windows will

be suitable. Our main theorem is as follows.

Theorem 2. Suppose the Gabor systems (g(1),Λ(1)) and

(g(2),Λ(2)) are full spark. Provided that Q = card(Λ(1)) =
card(Λ(2)) ≥ N + M − 1, there exists a symbol vector

m ∈ CQ, such that the family of vectors consisting of the

columns of Gm,g(2),g(1) is full spark. Moreover, the set of such

symbol vectors is of full measure, i.e., its complement has Q-

dimensional Lebesgue measure zero.

Theorem 2 follows (by means of a union bound argument)

from the following Proposition 1, which assumes that the

Q-dimensional symbol vector is randomly chosen, thereby,

yielding a random M×N Gabor multiplier matrix G
m,g(2),g(1)

with a very specific structure/distribution.

Proposition 1. Suppose the Gabor systems (g(1),Λ(1)) and

(g(2),Λ(2)) are full spark, r > 0, and m is uniformly

distributed on the ball BQ(0, r) with Q ≥ N +M − 1. Then,

the family of vectors consisting of the columns of G
m,g(2),g(1)

is full spark with probability 1.

The proof of Proposition 1 is somehow involved and cannot

be presented due to space limitations. The key ingredient is an

important concentration of measure result for random Gabor

multipliers (cf. related results in [28]–[31]). Details will be

given in an upcoming paper.

Now consider the CS scenario,

y = Gm,g(2),g(1)x, ‖x‖0 ≤ S, (3)

where Gm,g(2),g(1) ∈ C
M×N is a Gabor multiplier with N ≥

M ≥ 2S and Q ≥ N +M − 1. Then, by virtue of Theorem

2, for Lebesgue almost all m, g(1), and g(2) (in the sense of

Theorem 2), solving the ℓ0-minimization problem,

(P0) x̃ = arg min
z

‖z‖0 subject to y = Gm,g(2),g(1)z

will yield the true solution x̃ = x, cf. the discussion in the last

paragraph of Subsection I-B. We also would like to emphasize

that Theorem 2 implies correct recovery by means of (P0)

with probability 1 for all random symbol vectors m whose

distribution is absolutely continuous with respect to the Q-

dimensional Lebesgue measure.

IV. NUMERICAL EXPERIMENTS AND DISCUSSION

Here, we investigate ℓ1-minimization to obtain an estimate

x̃ of x for measurements given by (3). Based on our insights

about the (P0) program, we choose the multiplier symbol

at random and study its recovery performance by means of

simulations.

In all our experiments we fix the signal length to

N = 1024, whereas we vary the number of measure-

ments M ∈ {128, 256, 512}. The windows of both

Gabor systems, g(1) ∈ CN and g(2) ∈ CM , are

chosen as sampled, periodized Gaussian windows with

variance 1. The corresponding time-frequency shift

sets Λ(1) and Λ(2) are assumed to have a rectangular

structure, i.e., Λ(1) = {0, α(1), 2α(1), . . . , (N/α(1) −
1)α(1)} × {0, β(1), 2β(1), . . . , (N/β(1) − 1)β(1)} and

Λ(2) = {0, α(2), 2α(2), . . . , (M/α(2) − 1)α(2)} ×
{0, β(2), 2β(2), . . . , (M/β(2) − 1)β(2)}, respectively. The

exact parameters of the used Gabor systems are specified in

Table I.

Gabor system (g(2),Λ(2)) Gabor system (g(1) ,Λ(1))

M = 128
α(2) = 4

β(2) = 1
R(2) = 32

Q = card(Λ(2)) = 4096

N = 1024
α(1) = 32

β(1) = 8
R(1) = 4

Q = card(Λ(1)) = 4096
M = 256
α(2) = 8

β(2) = 1
R(2) = 32

Q = card(Λ(2)) = 8192

N = 1024
α(1) = 32

β(1) = 4
R(1) = 8

Q = card(Λ(1)) = 8192
M = 512
α(2) = 16
β(2) = 1

R(2) = 32
Q = card(Λ(2)) = 16384

N = 1024
α(1) = 32
β(1) = 2

R(1) = 16
Q = card(Λ(1)) = 16384

TABLE I
PARAMETERS OF GABOR SYSTEMS

For the Q-dimensional symbol vector m we consider

three different random distributions, i.e., (a) m is uniformly

distributed on the ball BQ(0, 1), cf. Proposition 1, (b) the

components mq ∈ C, q = 0, . . . , Q−1, are i.i.d. and uniformly

distributed on the complex unit circle, and (c) m is a complex

standard Gaussian random vector, i.e., m ∼ CN (0, I). The
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Fig. 1. Success rate of ℓ1-minimization versus sparsity for different numbers of measurements M . (a) m uniformly distributed on ball BQ(0, 1), (b) mq

uniformly distributed on complex unit circle, (c) m ∼ CN (0, I).

symbol vector is drawn from these distributions once and fixed

throughout all further simulations. We study the recovery of

S-sparse signals for S ∈ {1, . . . , 250}. To that end, we first

generate support sets of cardinality S uniformly at random

and, subsequently, draw the nonzero components from the

complex standard Gaussian distribution CN (0, I). Reconstruc-

tion is declared as successful, if the relative error satisfies

‖x̃−x‖2/‖x‖2 ≤ 10−5. We repeat this for 50 choices of x for

each S. The resulting success rates are depicted in Figure 1. It

is clearly seen that random Gabor multipliers show excellent

performance in recovering sparse signals via ℓ1-minimization.
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