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Abstract—In recent work [1], the authors introduced the
Unlimited Sampling framework which establishes that a bandlim-
ited function can be perfectly recovered from a constant-factor
oversampling of its modulo samples, hence complementing recent
developments in sensor design. This new sensing framework
allows to overcome the clipping or saturation problem that is a
fundamental limitation common to all formats of conventional
digital sensing that rely on Shannon’s sampling theorem. In
contrast to critical sampling rate of one sample per second, the
sampling density criterion prescribed by the Unlimited Sampling
Theorem requires a factor of 2we oversampling. In this paper, we
prove identifiability conditions linked with the unlimited sensing
setup. Our main result establishes that any sampling rate that
is faster than critical sampling allows for one-to-one mapping
between a finite energy bandlimited function and its modulo
samples. This result is corroborated by experiments and opens
further interesting questions around the topic as it relaxes the
previously held oversampling criterion.

I. INTRODUCTION

Almost all forms of modern data is acquired, stored and
transmitted in the digital format. Shannon’s sampling theorem
[2] is at the heart of all such digital sensing modalities and
its impact is so profound that the Third Industrial Revolution
is attributed to the digital philosophy. In simple terms, the
sampling theorem is a mathematical criterion that asserts that
if a continuous function changes slowly, it can be exactly char-
acterized by its discrete samples. How fast (or slow) a function
may change is measured using a tool called bandwidth, that is,
an upper bound on the fastest frequency of the function. This
simple principle allows us to represent the continuum with the
discrete.

When it comes to practice, the sampling theorem is im-
plemented using an electronic device whose name aptly jus-
tifies its functionality—the analog-to-digital converter or the
ADC. A practical problem with such devices is the range of
amplitudes that they can handle. In contrast to the sampling
theorem which can handle arbitrary range of amplitudes, the
ADC:s saturate when the input voltage exceeds their recordable
limit, say A. Mathematically, this is a many-to-one mapping
where every amplitude value that is larger than the threshold
maps to the threshold value. When this happens, the signals
are clipped [3]. The clipping or saturation problem is a fun-
damental bottleneck in digital sensing and several algorithmic
approaches have been developed in the literature to mitigate
this problem [4]-[9].

A. Unlimited Sensing Scheme

In order to overcome the dynamic range barrier in digital
sensing modalities, in our recent work [1], we studied a non-
linear sensing methodology that exploits the modulo opera-
tion. The modulo an input voltage with respect to maximum
recordable voltage A computes the remainder one dividing
the input amplitude by A. This many-fo-one mapping has a
folding effect, in that, all the amplitudes or voltages v € R
that are larger than A map to the range of the ADC, that is,
[v] > A — [0,A]. Said differently, mod (v) € [0, ] and
the modulo samples populate the recordable range better than
how it would happen for conventional pointwise samples'.
In practice, modulo operations can be programmed in the
hardware and this is indeed the case with self-reset ADCs [10].
However, such ADCs record both the modulo measurements
as well as the number of folds. This is different from our
approach [1] which only relies on the modulo samples.

In analogy to the Shannon’s sampling theorem, the Un-
limited Sampling Theorem (UST) purely depends on the
bandwidth of the function. This is a remarkable feature be-
cause one would expect the sampling density to depend on
A, however, this is not the case and hence the name, unlim-
ited sampling. The UST essentially trades-off dynamic range
with oversampling. For a m—bandlimited function?, below, we
compare the perfect recovery conditions for conventional and
unlimited sampling theorems.

H Shannon’s Sampling  Unlimited Sampling

Sampling Rate

(samples/second) = 2me

T<1 T< L

In the above, e is the Euler’s constant. In the context of
UST, what T < 1/27e implies is that oversampled discrete
derivatives of the modulo samples are unaffected by the
modulo operation. Based on this observation, we proposed
a stable recovery algorithm that reconstructs the bandlimited
function given modulo samples, in noiseless conditions. This
reconstruction proposed in this work was global in nature,
that is, all modulo samples are required for reconstruction
of signals. Following up one our first result, we presented a
local reconstruction scheme in [11] which allows to unfold a
finite subset of samples from modulo samples. This scheme is

IThis can be verified by comparing the histogram of usual pointwise
samples with the modulo samples.
2Normalized frequency in radians per second.



particularly useful for parametric signals which are character-
ized by samples proportional to the number of parameters. For
instance, in [11], we discussed recovery of low-pass filtered
spikes given modulo samples. In [12], we discussed sampling
conditions for sum-of-sinusoids model that is widely studied
in spectral estimation theory.

Several papers have followed up on the unlimited sensing
framework. In [13], Rudresh and co-workers presented a
wavelet based scheme for reconstructing functions acquired
using the unlimited sampling method. In working with the
noisy scenario, Cucuringu and Tyagi presented an interesting
optimization approach for modulo samples in [14]. Com-
pressed sensing of signals within the unlimited sampling
architecture was investigated by Musa and co-workers in [15].
Recently, modulo sampling based hardware implementation
was discussed in the work of Ordentlich and colleagues [16].
In [17], Graf et al. proposed “one-bit unlimited sampling” with
the goal of reconstructing functions from the sign of modulo
samples.

B. Contributions

The main goal of this paper is to investigate injectivity con-
ditions for unlimited sampling theory. Our main result shows
that T < 1 is sufficient to guarantee a one-to-one mapping
between the bandlimited function and its modulo samples. This
theoretical result has interesting practical consequences when
it comes to designing hardware architectures as ADCs with
lower sampling rates can be used for implementing modulo
architectures. Furthermore, we provide examples of computer
simulations where T € (1/2me, 1] allows to unfold modulo
samples.

II. MAIN RESULTS
A. Basic Notation and Useful Definitions

L is the space of square-integrable functions and |-, is

the associated Lo-norm. Let f(w) = [ f(t)e “'dt denote
the Fourier Transform of f € L', with its natural extension
to arbitrary distributions via duality. We say f € C*°(R) is
2-bandlimited or,

feBaes flw)= 1—q,0 (W) Fw)

where 1p (t) is the indicator function on domain D. This
includes functions with infinite energy such as a pure sine
wave; when restricting to functions of finite energy one obtains
the Paley-Wiener space are specified as,

PWgq := f € BoN L.
Note that for € > 0, one has PWq C PWgq ..

B. A Useful Result from Complex Analysis

Here we recall a result from complex analysis regarding
analytic functions.

Theorem 1. Let f(z) and g(z) be analytic functions in a
common domain D. If f = g on some D' C D, D' having an
accumulation point, then f = g everywhere in D.

Theorem 2. Let f () and f2(2) be analytic functions in a
common domain D. If f1 = fo on some D' C D, D’ having
an accumulation point, then f1 = f1 everywhere in D.

For further details, we refer to [18] (cf. pg. 124). This result
is also known as the Identity Theorem in literature.

C. Injectivity Conditions for Unlimited Sampling

Our main result shows that even very small oversampling
guarantees unique representation of a signal in PW, by its
modulo samples. To prove this, we begin with the following
Lemma.

Lemma 1. Assume that f € PW,, € > 0 and L C Z is some

finite set. Then f is uniquely characterized by its samples in
Te - (Z\L) where 0 < T, < .

Proof. Assume for a contradiction that there are f, ¢ > 0 and
L that violate the lemma. That is, 3g € PW,. such that

VteT.-(Z\L), h(t)=(f-g)()=0. (1)

Note that as PW,; is a linear space, one has h € PW, C
PW, .. and the Nyquist rate associated to the latter space
corresponds to T, < WLJFE So we can invoke Shannon’s
sampling theorem to obtain for an appropriate normalization
constant ¢,

h (t) = Ce ZnGZ
= Ce Znel

by assumption. Consequently, in the Fourier domain, the above
reads,

h (nT.)sinc (t/T. — n)
h (nT.)sinc (t/T. — n)

~

h (w) = TECEﬂ‘w|<ﬂ-+E (w) Z h (nTe) ejwnTe . (2)
nel
H(w)
Now
hePW,=H(w)=0, Ywe (m,m+e¢).

As H(w) in (2) is a trigonometric polynomial and hence an
entire function, Theorem 2 (the Identity Theorem [18]) implies
that H (w) and the zero function agree on the full complex
plane; consequently & = 0 and we obtain a contradiction to
our assumption in (1), that is, f # g. O

Next, we use Lemma 1 to prove that oversampling uniquely
determines modulo samples.

Theorem 3 (Injectivity Theorem for Unlimited Sampling).
Any f € PW,. is uniquely determined by its modulo samples
on the grid {t, =nT.}, ., with € > 0.

Proof. Assume that f is not uniquely determined by its
equidistant, pointwise modulo samples, that is, there are
f1 # fo € PW, with

bil (tn) = mod (f2 (tn)) ,  th=nTe.

3)
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Fig. 1. We compare two realizations of a w—bandlimited signal with absolute maximum value, unity. The maximum recordable voltage is set to be A = 1/20
implying that the signal is 20 times larger than the ADC threshold. In either case, we set the sampling rate to be T = 1/4 samples per second. Given modulo
samples, we reconstruct the bandlimited signal using the recovery algorithm for unlimited sampling in [1]. (a) Sampling rate T = 1/4 (with 5 orders of
forward differences) is enough to recover the signal to its machine precision. This verifies the result of Theorem 3. (b) With the same setup as (a) and even
higher orders of differences, recovery is not possible. Repeating the experiment with T = 1/27e (the sampling rate prescribed by the unlimited sampling

theorem), recovery succeeds for both signals.

Since fr € PW,, k = 1,2, as before in (1), we have,
fi(t) = f2(t) € PWy C Lo.

With  appropriate  ¢., the family of functions
{cesine (t/Te — n)}nez is an orthonormal basis of PW .,
Shannon’s sampling theorem yields that,

11 () = fa ()7, = ce Y 1 (0Te) = fo (nTe)[*. (@)
nez

We know that each fi (nT.)— fo(nT.) € A\Z as f; and

f2 have the same modulo samples. Thus the right hand side

of (4) can only be finite if all but finitely many differences

fi (nTe) — fo (nT.) € AZ are zero. Hence we can use Lemma

1 and f; and f5 cannot both be simultaneously in PW,. [

D. Experimental Demonstration

The result of Theorem 3 is experimentally verified in Fig. 1.
We generate two bandlimited functions f € B, so that the
critical sampling rate as per Shannon’s sampling theorem
and the unlimited sampling theorem is Tgpannon = 1 and
Tys = 1/2me, respectively. In order to verify the result of
Theorem 3, we set the sampling rate for our experiment to be
T = 1/4 € (Tys, Tshannon)- There on, we use the recovery
algorithm developed in [1]. As shown in Fig. 1-(a), the method
succeeds and the mean squared error (MSE) matches machine
precision (o< 10733). As shown in Fig. 1-(b), under the same
settings, the recovery algorithm fails to recover a different
realization of f € B,. Repeating the same experiment again
with Tys = 1/2we, both signals are perfectly recovered
(again, up to machine precision).

III. CONCLUSIONS AND FUTURE DIRECTIONS

Unlimited sampling theorem proves that a bandlimited
function can be perfectly recovered from its modulo samples
provided that the sampling rate is a factor of 27e faster than the
critical sampling rate of 1 sample per second. In this paper, we

proved that for signals of finite energy any sampling rate faster
than critical sampling yields modulo samples that uniquely
represent a bandlimited function. This observation suggests
that it should be possible in principle that recovery algorithms
can be designed that can work with slower sampling rates
compared to the 2me oversampling. As we have demonstrated
in numerical experiments, however, the unlimited sampling
setup introduced in [1] requires some modifications before
being able to achieve this goal. Another interesting direction
to explore would be to which extent the identifiability results
derived in this paper carry over to signals that do not have
finite energy, such as a combination of pure sine waves.
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