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Abstract—Equiangular tight frames (ETFs) may be used to
construct examples of feasible points for semidefinite programs
arising in sum-of-squares (SOS) optimization. We show how
generalizing the calculations in a recent work of the authors’ that
explored this connection also yields new bounds on the sparsity of
(both real and complex) ETFs. One corollary shows that Steiner
ETFs corresponding to finite projective planes are optimally
sparse in the sense of achieving tightness in a matrix inequality
controlling overlaps between sparsity patterns of distinct rows
of the synthesis matrix. We also formulate several natural open
problems concerning further generalizations of our technique.

I. INTRODUCTION

One of the most important objects in combinatorial opti-
mization is the cut polytope, the convex set of matrices

CN := conv
({
xx> : x ∈ {±1}N

})
⊂ RN×N

sym . (1)

The cut polytope has a rich discrete geometry [6] describing
the solution space of the problem of finding the largest cut in
a graph, which amounts to maximizing a linear function over
CN . By the classical result of Karp [15], this problem cannot
be solved in polynomial time unless P = NP. Therefore,
relaxations of CN to larger but more algorithmically tractable
convex sets have been proposed, perhaps the best-known of
which is the relaxation to the (real) elliptope

E N :=
{
X ∈ RN×N

sym :X � 0, diag(X) = 1
}
⊇ CN . (2)

There is extensive literature both on the geometry of E N (thor-
oughly described in [6]), and on approximating optimization
over CN by optimization over E N (e.g. [14], [8], [16]).

Every X ∈ E N is the Gram matrix of unit vectors, Xij =
〈vi,vj〉 for some v1, . . . ,vN ∈ Rr with r := rank(X) ≤ N .
The boundary of E N consists of X having r < N . In the
language of frame theory, these boundary points are the Gram
matrices of overcomplete unit norm frames. We will explore
applications of geometric results about E N to the following
types of structured frames.

Definition I.1. Unit vectors v1, . . . ,vN ∈ Cr with X =
(〈vi,vj〉)Ni,j=1 form a unit norm tight frame (UNTF) if any
of the following equivalent conditions hold.

1)
∑N

i=1 viv
∗
i = N

r Ir.
2) The nonzero eigenvalues of X all equal N

r .
3) ‖X‖2F =

∑N
i=1

∑N
j=1 |Xij |2 = N2

r .
The vi form an equiangular tight frame (ETF) if moreover
there exists α ∈ [0, 1] such that |Xij | = |〈vi,vj〉| = α
whenever i 6= j.

When moreover vi ∈ Rr, we have X ∈ E N , and such points
form an interesting subset of the elliptope’s boundary. In both
the real and complex cases, UNTFs and ETFs have been
studied in great detail previously (e.g. [20], [4], [3], [11]).

The set E N , however, is only the first of a sequence of
tightening relaxations of CN , described by the sum-of-squares
(SOS) hierarchy (see [17], [18]). In the recent work [1], the
authors studied membership of the Gram matrices of real
ETFs in one such tighter relaxation through a connection
with the following general concept from convex geometry (see
Section IV for further details).

Definition I.2. For a closed convex set K ⊆ Rd and X ∈ K,
the perturbation of X in K is the subspace

pertK(X) :=
{
A ∈ Rd : ∃ t > 0 with X ± tA ∈ K

}
. (3)

To that end, in [1] we computed the projection operator to
pertE N

2
(X) for X the Gram matrix of any real ETF.

In this paper, we give a self-contained presentation of
this calculation for perturbation subspaces in the complex
generalization of the elliptope,

Ẽ N :=
{
X ∈ CN×N

herm :X � 0, diag(X) = 1
}
. (4)

Using that this projection operator is positive semidefinite
(psd), we derive inequalities in degree 4 polynomials of the
entries of (real or complex) ETF vectors, which translate to
new inequalities controlling the sparsity and spark of ETF
vectors. Further background and details of abbreviated proofs
are available in the extended version [2] of this paper.

II. PROJECTING TO THE PERTURBATION SUBSPACE

In this section, we compute the orthogonal projection oper-
ator to pertẼ N (X),

PA := argmin
B∈pertẼN (X)

1

2
‖A−B‖2F . (5)

The key tool is the following classical result describing per-
turbation subspaces for the elliptope.

Proposition II.1 (Theorem 1(a) of [19]). Let X ∈ Ẽ N with
rank(X) = r, and let v1, . . . ,vN ∈ Cr such that Xij =
〈vi,vj〉 for i, j ∈ [N ]. Write V ∈ Cr×N for the matrix with
the vi as its columns. Then,

pertẼ N (X) =

{
V ∗HV :

H ∈ Cr×r
herm,

v∗iHvi = 0 ∀ i ∈ [N ]

}
. (6)



Our formula is then the following (retaining the notation from
Proposition II.1).

Lemma II.2. Let v1, . . . ,vN ∈ Cr form a UNTF. Suppose
the viv∗i are linearly independent, or equivalently that |X|�2
is non-singular. Let x1, . . . ,xN be the columns of X . Then,

PA =
r2

N2

(
XAX −

N∑
i,j=1

(|X|�2)−1ij (x∗iAxi)xjx
∗
j

)
. (7)

(For any M ∈ Cm×n, we denote by |M |�2 the matrix with
entries |Mij |2, the Schur product of M with its conjugate.)

Proof. By Proposition II.1 and the variational characterization
(5), we have

PA = V ∗H?(A)V , (8)
H?(A) := argmin

H∈Cr×r
herm

v∗i Hvi=0 for i∈[N ]

obj(H;A), (9)

obj(H;A) :=
1

2
‖A− V ∗HV ‖2F

=
1

2
‖A‖2F +

N2

2r2
‖H‖2F − 〈V AV ∗,H〉. (10)

(In the final equation we use the UNTF property.) Introducing
a vector of Lagrange multipliers γ ∈ RN for the constraints
in the optimization defining H?, we obtain the Lagrangian

L(H,γ;A) := obj(H;A)−
N∑
i=1

γiv
∗
iHvi

=
1

2
‖A‖2F +

N2

2r2
‖H‖2F

−

〈
V AV ∗ +

N∑
i=1

γiviv
∗
i ,H

〉
. (11)

The first-order condition for optimality then implies that

H?(A) = V AV ∗ +

N∑
i=1

γi(A)viv
∗
i (12)

for some γ(A) such that v∗iH
?(A)vi = 0 for i ∈ [N ]. These

constraints may be written as the system
N∑
j=1

|〈vi,vj〉|2γj(A) = −v∗i V AV ∗vi for i ∈ [N ], (13)

which is a linear system in γ(A) with matrix |X|�2. Since this
matrix is invertible by assumption, there is a unique solution

γi(A) = −
N∑
j=1

(|X|�2)−1ij v
∗
jV AV

∗vj . (14)

The result follows by substituting into (12) and then (8).

The result we will use to obtain sparsity inequalities fol-
lows from manipulations of the fact that P is psd, whereby
〈A,PA〉 ≥ 0 for any A ∈ CN×N

herm . Surprisingly, this fact is
equivalent to the following simpler matrix inequality.

Lemma II.3. Let v1, . . . ,vN ∈ Cr form a UNTF. Suppose
the viv∗i are linearly independent, or equivalently that |X|�2
is non-singular. Then,

(|V |�2)(|X|�2)−1(|V |�2)> � Ir, (15)

or equivalently

(|V |�2)>(|V |�2) � |X|�2. (16)

Remark. After obtaining Lemma II.3, we discovered the ref-
erence [21], which gives a general result of the form (16) not
depending on the vi forming a tight frame. The proof of [21]
builds a psd block matrix through the Schur product theorem
and uses that its Schur complement remains psd. Our proof
gives a more direct geometric argument, and, as we discuss
in Section IV, may generalize to higher-degree inequalities.

Proof. Let us write

PA := P1A− P2A, (17)

P1A :=
r2

N2
XAX, (18)

P2A :=
r2

N2

N∑
i,j=1

(|X|�2)−1ij (x∗iAxi)xjx
∗
j . (19)

Writing V̂ :=
√

r
NV , we have

〈A,P1A〉 =
∥∥∥V̂ AV̂ ∗∥∥∥2

F
, (20)

〈A,P2A〉 =
N∑

i,j=1

[
(|X|�2)−1ij(
v∗i V̂ AV̂

∗vi

)(
v∗j V̂ AV̂

∗vj

)]
. (21)

Any H ∈ Cr×r
herm may be expressed in the form r

N V̂ AV̂
∗ by

taking A = V̂ ∗HV̂ . Therefore, the inequality 〈A,PA〉 =
〈A,P1A〉 − 〈A,P2A〉 ≥ 0 holding for A ∈ CN×N

herm is
equivalent to the following inequality holding for H ∈ Cr×r

herm:

N∑
i=1

N∑
j=1

(|X|�2)−1ij (v∗iHvi)
(
v∗jHvj

)
≤ ‖H‖2F . (22)

Since applying a unitary transformation to a UNTF produces
another UNTF having the same Gram matrix X , we may
assume that H is diagonal and real-valued. Rewriting (22)
in the diagonal entries of H then gives the result.

III. SPARSITY INEQUALITIES FOR ETFS

Our remaining results take advantage of the fact that the
matrix |X|�2 is very simple for an ETF:

|X|�2 = (1− α2)Ir + α211>. (23)

Moreover, by the well-known Welch bound [22], α depends
only on the dimension parameters N and r:

α =

√
N − r
r(N − 1)

. (24)



In this case, Lemma II.3 gives the following.

Theorem III.1. Let v1, . . . ,vN ∈ Cr for r > 1 form an ETF.
Define R := (|V |�2)(|V |�2)> ∈ Rr×r, with entries Rk` =∑N

i=1 |(vi)k|2|(vi)`|2. Then,

R �
1− 1

r

1− 1
N

Ir +
N
r − 1

r(1− 1
N )

11>. (25)

Proof. When r > 1 then α < 1, so |X|�2 is invertible and
Lemma II.3 applies. From (23) and (24), we find

(|X|�2)−1 =
1− 1

N

1− 1
r

(
IN −

N − r
N(N − 1)

11>
)
. (26)

We have

(|V |�2)11>(|V |�2)> =
N2

r2
11>, (27)

and substituting into (15) gives the result.

The next result gives the exact dimension of the subspace on
which the inequality (25) is sharp for any Steiner ETF [13], a
general combinatorial construction of an ETF as a Kronecker-
like product of the incidence matrix of a Steiner system with
a Hadamard matrix. For the sake of brevity we assume all
necessary terminology and basic combinatorial results, and
refer the reader to the work [13] or the general reference [5]
for further information.

Proposition III.2. Let v1, . . . ,vN ∈ Rr be a Steiner ETF
constructed from a Steiner system with parameters (2, k, v)
and a Hadamard matrix of suitable size. Let R ∈ Rr×r have
entries Rk` =

∑N
i=1 |(vi)k|2|(vi)`|2. Then,

dim

(
ker

(
1− 1

r

1− 1
N

Ir +
N
r − 1

r(1− 1
N )

11> −R

))
= v. (28)

When the Steiner system is a finite projective plane, then r = v,
so the inequality (25) is an equality of matrices.

Proof. Let b = v(v−1)
k(k−1) be the number of blocks in the

underlying Steiner system and ρ = v−1
k−1 be the number of

blocks in which each point lies (typically this is denoted r
in combinatorics, which we adjust to avoid conflict with our
notation for ETF dimensions). Then, per the construction of
[13], r = b and N = v(1 + ρ).

We first compute R: letting N ∈ Rv×b be the incidence
matrix of points and blocks of the Steiner system, we find

R =
ρ+ 1

ρ2
N>N = kIb +AG, (29)

where AG is the adjacency matrix of the block intersection
graph G. G is a strongly regular graph, admitting a spectral
expansion

AG = k(ρ− 1)1̂b1̂
>
b + (ρ− 1− k)PU+ − kPU− , (30)

where 1̂b = 1√
b
1b, U± are eigenspaces orthogonal to one

another and to the vector 1 and satisfying U+⊕U−⊕1 = Rb,
and PU± are the projectors onto these subspaces. The corre-

sponding dimensions are

dim(U+) = v − 1, (31)
dim(U−) = b− v. (32)

We thus obtain the spectral expansion of R,

R = k

(
1 +

1

ρ

)
1̂r1̂
>
r +

(
1− 1

ρ2

)
PU+ . (33)

Some algebraic manipulations show that the following iden-
tities hold between the eigenvalues of the right-hand side of
(25) and those of R:

k

(
1 +

1

ρ

)
=

1− 1
r

1− 1
N

+
N − r

r(1− 1
N )

, (34)

1− 1

ρ2
=

1− 1
r

1− 1
N

, (35)

and therefore in fact

1− 1
r

1− 1
N

Ir +
N
r − 1

r(1− 1
N )

11> −R =
1− 1

r

1− 1
N

PU− . (36)

The result then follows from the dimension formula (31).

Finally, to illustrate how some more concrete results may be
obtained from Theorem III.1, we give corollaries controlling
ETF sparsity, spark, and the overlap of rows of the synthesis
matrix V . (We outline the proofs and leave further details to
the extended paper [2].) Recall that the spark is defined as

spark(V ) := min
x∈CN\{0}

V x=0

‖x‖0 = min
x∈row(V )⊥\{0}

‖x‖0. (37)

The natural dual measure of sparsity, sometimes called
cospark, is

sparsity(V ) := min
x∈row(V )\{0}

‖x‖0, (38)

which gives control of the sparsity of the entire matrix V by
controlling each row.

Corollary III.3. Let v1, . . . ,vN ∈ Cr form an ETF, and let
V ∈ Cr×N have the vi as its columns. Then,

sparsity(V ) ≥ N
(
1 +

(r − 1)2

N − 1

)−1
, (39)

spark(V ) ≥ N
(
1 +

(N − r − 1)2

N − 1

)−1
. (40)

Proof Sketch. By applying a suitable rotation and testing
the diagonal entries of (25), we obtain an upper bound on
‖V >y‖44 for any y ∈ Cr with ‖y‖2 = 1. Applying the
Cauchy-Schwarz inequality ‖x‖0 ≥ ‖x‖42/‖x‖44 then gives the
sparsity result. Applying the same argument to the Naimark
complement ETF gives the spark result.

This improves on a similar bound from Theorem 5 of [10];
on the Naimark complements of the infinite families of ETFs
constructed by [7], [13], [12], [9] with dimensions scaling as
N ∼ r3/2, our spark bound gives an asymptotic improvement



of sub-leading order in the dimension.
The final corollary we mention shows that the overlap

between sparsity patterns of distinct rows of an ETF in fact
has a certain “typical” value for a given pair of dimensions r
and N , from which its possible deviations are bounded.

Corollary III.4. Let v1, . . . ,vN ∈ Cr form an ETF, and let
V ∈ Cr×N have the vi as its columns. Let a, b ∈ row(V ) with
〈a, b〉 = 0 and ‖a‖22 = ‖b‖22 = N

r (for instance, two distinct

rows of V ). Let D := N
r2 (1+

(r−1)2
N−1 ) and E :=

N
r −1

r(1− 1
N )

. Then,∣∣〈|a|�2, |b|�2〉 − E∣∣2 ≤ (D − ‖a‖44) (D − ‖b‖44) . (41)

Proof Sketch. D and E equal the diagonal and off-diagonal
entries respectively of the right-hand side of (25). After
rotating to an ETF in which a and b occur as rows, the result
follows by taking the determinant of a 2 × 2 minor of the
difference between the right- and left-hand sides of (25).

IV. OPEN PROBLEMS

The results in this paper arose from studying sum-of-squares
relaxations of the cut polytope, which are defined as follows.

Definition IV.1. E N
d is the set of X ∈ RN×N

sym for which there
exists Y ∈ RNd/2×Nd/2

sym where, identifying indices of Y with
elements of [N ]d/2, the following conditions hold.

1) Yij = 1 whenever all indices occur an even number of
times across i and j.

2) Yij depends only on the set of indices occuring an odd
number of times across i and j.

3) Y(1,...,1,i)(1,...,1,j) = Xij for all i, j ∈ [N ].
4) Y � 0.

The following inclusions hold among these sets:

E N = E N
2 ) E N

4 ) · · · ) E N
N+1{N odd} = CN . (42)

In [1], we showed that ifX is the Gram matrix of a real ETF of
N vectors in Rr, then X ∈ E N

4 if and only if N < r(r+1)
2 , in

which case the subspace vec(pertE N
2
(X)) forms an eigenspace

of the associated Y ∈ RN2×N2

. These origins motivate the
following question for future investigation.

Question IV.2. Given the Gram matrix X of a real ETF of N
vectors in Rr, what is d(X) = max{d :X ∈ E N

d }? Does the
answer depend only on N and r, i.e. d(X) = d(N, rank(X))?

More specifically, we are interested in the details of the
construction that would underlie such a result.

Question IV.3. When X is the Gram matrix of a real ETF
and X ∈ E N

d with a “witness” Y per Definition IV.1, is there
a tractable description of the eigenspaces of Y ?

If this is the case, then we may hope to imitate the present
approach: compute projectors to the analogous subspaces for
complex ETFs, write down the positivity relation for those
operators, and derive polynomial inequalities in the ETF en-
tries. It remains to be seen, however, whether such inequalities
could still be interpreted as giving information about sparsity

of ETFs, or whether they would control new quantities for
higher degrees.
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