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Abstract—We consider non-complete Gabor frame sequences
generated by an S0-function and a lattice Λ and prove that
there is m ∈ N such that all time-frequency shifts leaving the
corresponding Gabor space invariant have their parameters in
1
m
Λ. We also investigate time-frequency shift invariance under

duality aspects.

I. INTRODUCTION

Due to its many remarkable properties, the Feichtinger
Algebra S0 is known to be a perfect function space for time-
frequency analysis. Since functions from S0 are very well
localized in both time and frequency, uncertainty principles in
time-frequency analysis (here this is the so-called Amalgam-
Balian-Low theorem) prohibit such functions from generating
Riesz bases for L2(Rd). To be precise, a Gabor system
(g,Λ) = {e2πibxg(x − a) : (a, b) ∈ Λ} with g ∈ S0 and a
lattice Λ ⊂ R2d can by no means be a Riesz basis for L2(Rd).

However, the system (g,Λ) might still constitute a Riesz
basis for its closed linear span G(g,Λ) 6= L2(Rd). In [3] (see
also [4]) the authors observed that – as long as the lattice Λ has
rational density – this can only happen if the time-frequency
shifts (TFS) that leave G(g,Λ) invariant have parameters in Λ.
This generalizes the Amalgam-Balian-Low theorem and was
complemented in [5] and [6] by corresponding generalizations
of the Balian-Low theorem. However, in all papers [3], [4],
[5], [6] it is assumed that the generating lattice has rational
density. This is due to the nature of the Zak transform, which
is extensively used in the proofs.

In this note we find methods without using the Zak trans-
form and prove two interesting theorems in one dimension
(d = 1) concerning the TFS-invariance of proper subspaces
G(g,Λ) of L2(R) with S0-generator g. In Section III we
prove (see Theorem III.3) the existence of some m ∈ N
such that the TFSs under which G(g,Λ) is invariant have
parameters in 1

mΛ, if (g,Λ) is a frame for G(g,Λ). This is
certainly a strong restriction for such TFSs and is close to the
following conjecture: The TFSs that leave G(g,Λ) invariant
have their parameters in Λ if (g,Λ) is a Riesz basis for
G(g,Λ). We mention that our theorem also generalizes the
Amalgam-Balian-Low theorem.

In Section IV we characterize the TFS-invariance of G(g,Λ)
in terms of the system (g,Λ◦), where Λ◦ is the adjoint lattice
corresponding to Λ.

II. PRELIMINARIES

For a, b ∈ R and f ∈ L2(R) we define the operators of
translation by a and modulation by b as

Taf(x) := f(x− a) and Mbf(x) := e2πibxf(x),

respectively. Then both Ta and Mb are unitary operators on
L2(R) and hence so is

π(a, b) := TaMb = e−2πiabMbTa.

Let A ∈ Rn×n be invertible. Then Λ = AZn is called a lattice
in Rn. The density of Λ is defined by d(Λ) = |detA|−1. For
g ∈ L2(R) and a lattice Λ ⊂ R2 we set

(g,Λ) := {π(λ)g : λ ∈ Λ}

and
G(g,Λ) := span (g,Λ).

For a closed linear subspace G ⊂ L2(R) let I(G) be the set
of time-frequency shifts which leave G invariant, i.e.,

I(G) := {z ∈ R2 : π(z)G ⊂ G}.

Lemma II.1 ([2, Prop. A.1]). Let g ∈ L2(R), let Λ ⊂ R2 be
a lattice, and set G := G(g,Λ). Then z ∈ I(G) iff π(z)g ∈ G.
Moreover, I(G) is a closed additive subgroup of R2.

Lemma II.1 shows that z ∈ I(G) implies −z ∈ I(G), i.e.,
π(z)G ⊂ G and π(z)−1G ⊂ G. Hence, we have in fact that
π(z)G = G. Lemma II.1 also implies that for n ∈ Z and
λ ∈ Λ,

z ∈ I(G(g,Λ)) =⇒ nz + λ ∈ I(G(g,Λ)). (1)

In what follows, for a set ∆ ⊂ Rn we let Bε(∆) :=⋃
a∈∆Bε(a), where Bε(a) := {x ∈ Rn : |x− a| < ε}.
By S0(R) we denote the Feichtinger Algebra, which is the

space of functions f ∈ L2(R) for which 〈f, π(·)ϕ〉 ∈ L1(R2)
for some (and hence every) Schwarz function ϕ 6= 0.

Theorem II.2 ([7, Thm. 13.1.1]). Let g ∈ S0(R), g 6= 0.
Then there exists ε > 0 such that for any lattice Λ ⊂ R2 with
Bε(Λ) = R2 the Gabor system (g,Λ) is a frame for L2(R).

Corollary II.3. Let g ∈ S0(R), let Λ ⊂ R2 be a lattice, and
set G := G(g,Λ). Let ε > 0 be as in Theorem II.2. If there
exist linearly independent vectors v1, v2 ∈ Bε(0)∩I(G), then
G = L2(R).



Proof. Let A be the matrix with v1 and v2 as columns. Then
Γ := AZ2 is a lattice in R2 and, since v1, v2 ∈ I(G),
we have G(g,Γ) ⊂ G by Lemma II.1. Moreover, since also
v1, v2 ∈ Bε(0), we have Bε(Γ) = R2. Using Theorem II.2,
we conclude that L2(R) = G(g,Γ) ⊂ G, i.e., G = L2(R).

III. TFS-INVARIANCE AND GABOR FRAME SEQUENCES

Lemma III.1. Let g ∈ L2(R), let Λ ⊂ R2 be a lattice, and
set G := G(g,Λ). If there exists ε > 0 such that

Bε(Λ) ∩ I(G) = Λ, (2)

then there is some m ∈ N such that

I(G) ⊂ 1
mΛ.

Proof. Let Λ = AZ2 and set F := A([0, 1)2). Then we find
sets C` ⊂ R2 with diameter d` < ε such that F ⊂

⋃N−1
`=1 C`.

Let z ∈ I(G) and consider the N points

zk := kz mod Λ, k = 0, . . . , N − 1,

in F . We claim that z0, . . . , zN−1 are not all distinct. Indeed,
let us assume towards a contradiction that they are. Then, by
the pigeonhole principle, there are 0 ≤ ` < k ≤ N − 1 such
that zk, z` ∈ Cj for some j and thus 0 < |zk − z`| < ε. But
w0 := zk− z` = (k− `)z+λ for some λ ∈ Λ, and thus w0 ∈
I(G) by (1); furthermore, w0 ∈ Bε(0). In fact, we also have
w0 /∈ Λ, since otherwise zk−` = (k − `)z mod Λ = 0 = z0,
contradicting our assumption that z0, . . . , zN−1 are distinct.
Thus, w0 ∈ Bε(0)\Λ and w0 ∈ I(G), which contradicts (2).

Finally, since z0, . . . , zN−1 are not distinct, there are 0 ≤
` < k ≤ N − 1 with zk = z`, and hence (k − `)z ∈ Λ. That
is, z ∈ 1

nΛ for some n ∈ {1, . . . , N − 1}. Hence, the claim
holds for m := (N − 1)!.

In the proof of the next lemma we use the technique of meta-
plectic operators (see [7, Section 9.4]): For any B ∈ R2×2,
detB = 1, there exists a unitary operator UB from L2(R)
onto itself such that UBρ(z) = ρ(Bz)UB for all z ∈ R2,
where ρ(a, b) := eπiabπ(a, b).

Lemma III.2. Let g ∈ S0(R) and let Λ ⊂ R2 be a lattice such
that (g,Λ) is a frame for its closed linear span G = G(g,Λ).
If there is a line Lz = {tz : t ∈ R}, z ∈ R2\{0}, such that
Lz ⊂ I(G), then G = L2(R).

Proof. 1. We first assume that Λ = αZ × βZ, α, β > 0,
and Lz = {(0, t) : t ∈ R}. Then for f ∈ G we have that
Mωf ∈ G for all ω ∈ R. By [9, Thm. 9.17], there exists a
Borel measurable set E ⊂ R such that G = L2(E), where we
consider L2(E) as a closed subspace of L2(R). The goal is to
show that E = R (up to a set of measure zero). To this end,
for f ∈ L2(R) consider the continuous function Γf : R→ R,
defined by

Γf (ω) := 〈SMωf,Mωf〉, ω ∈ R,

where S denotes the frame operator of (g,Λ). By [7, Thm.
6.3.2], the operator S has the Walnut representation

Sf = β−1
∑
n∈Z

Gn · Tnβ f, f ∈ L2(R),

with unconditional convergence of the series, and with

Gn(x) :=
∑
m∈Z

g(x−mα) · g(x− n
β −mα), x ∈ R.

Since the multiplication operators Gn and Mω commute,

Γf (ω) = β−1
∑
n∈Z

e−2πinβ ω〈GnTnβ f, f〉.

As (g,Λ) is a frame for G and Mωf ∈ G for all ω ∈ R and f ∈
G, there exists A > 0 such that Γf (ω) = 〈SMωf,Mωf〉 ≥
β−1A‖f‖22 for all f ∈ G. Integrating this over [0, β] gives

A‖f‖22 ≤ β−1
∑
n∈Z
〈GnTnβ f, f〉

∫ β

0

e−2πinβ ω dω = 〈hf, f〉

for all f ∈ G = L2(E), where h := G0 =
∑
m∈Z |Tmαg|2.

That is, ∫
E

(h(x)−A)|f(x)|2 dx ≥ 0

for all f ∈ L2(E). Using standard arguments, this implies that
h(x) ≥ A for a.e. x ∈ E.

Since Tmα g ∈ G = L2(E) and thus Tmαg(x) = 0 for
a.e. x ∈ R \ E and arbitrary m ∈ Z, it follows that h(x) = 0
for a.e. x ∈ R \ E. Note that h is continuous since g ∈ S0.
Hence, the open set h−1((0, A)) has zero measure and is thus
empty; that is, h(x) ∈ {0} ∪ [A,∞) for all x ∈ R. By the
intermediate value theorem, this implies that h(x) ≥ A for all
x ∈ R (since h ≥ |g|2 and g 6≡ 0) and thus, indeed, E = R.

2. Let Λ = αZ × βZ, α, β > 0, and Lz = {(t, 0) : t ∈
R}. Then (ĝ, βZ × αZ) is a frame for FG and {(0, t) : t ∈
R} ⊂ I(FG). Hence, Step 1 yields that G = F−1FG =
F−1L2(R) = L2(R).

3. Let Λ = αZ× βZ, α, β > 0, and let Lz = {tz : t ∈ R}
be an arbitrary line through the origin, z ∈ R2\{0}, such
that Lz ⊂ I(G). If the line Lz does not hit the lattice Λ
(i.e., there is no t ∈ R such that tz ∈ Λ), then the set {tz
mod Λ : t ∈ R} ⊂ I(G) is dense in [0, α) × [0, β), so that
Corollary II.3 yields the claim.

Hence, let us assume that z = (pα, qβ) for some p, q ∈ Z.
We may assume that q 6= 0 since otherwise we are in the
situation of Step 2. We may also assume that p and q are
co-prime. Let

B :=

(
1 −(pα)/(qβ)
0 1

)
and define a new lattice ΛB by ΛB := BΛ and the function
gB := UBg ∈ S0(R) (see [7, Prop. 12.1.3]), where UB is the
metaplectic operator corresponding to B. Then (gB ,ΛB) is a
frame for GB := G(gB ,ΛB) = UBG. This follows from the
fact that

π(w)g ∈ G =⇒ π(Bw)gB ∈ UBG.

The latter also implies that π(t ·Bz)gB ∈ GB for t ∈ R. But
Bz = B(pα, qβ)T = (0, qβ)T so that {(0, t) : t ∈ R} ⊂
I(GB). However, here we are not in the situation of Step 1



because the lattice ΛB is not separated. It is spanned by the
vectors (α, 0)T and (−(p/q)α, β). Since (0, β) ∈ I(GB), we
have that (kp/q, 0)α ∈ I(GB) for all k ∈ Z. Moreover, as
(`, 0)α ∈ ΛB ⊂ I(GB), it follows that ((kp mod q)/q, 0)α ∈
I(GB) for k ∈ Z. From the fact that p and q are co-prime, we
conclude that (α/q, 0) ∈ I(GB) and thus Γ := α

q Z × βZ ⊂
I(GB). Now, since Γ =

⋃q−1
k=0(ΛB + (kα/q, 0)T ), we obtain

(gB ,Γ) =

q−1⋃
k=0

(gB ,ΛB+(kα/q, 0)T ) =

q−1⋃
k=0

T−kα/q (gB ,ΛB).

And as T−kα/q G(gB ,ΛB) = GB for each k, it follows that
(gB ,Γ) is a union of q frames for GB and therefore itself
is a frame for GB . By Step 1, we find that G = U∗BGB =
U∗BL

2(R) = L2(R).

4. Let Λ and Lz be arbitrary. Then we find a symplectic
matrix C ∈ R2×2 such that ΛC := CΛ = αZ × βZ with
α, β > 0. Then (UCg,ΛC) is a frame for UCG and LCz ⊂
I(UCG). Hence, by the previous steps, G = U−1

C L2(R) =
L2(R) and the claim is proved.

The following theorem is a consequence of the preceding
results.

Theorem III.3. Let g ∈ S0(R) and let Λ ⊂ R2 be a lattice,
such that (g,Λ) is a frame for its closed linear span G =
G(g,Λ). Then exactly one of the following cases applies:

(a) I(G) ⊂ 1
mΛ for some m ∈ N\{0}.

(b) (g,Λ) is a frame for L2(R).

Proof. By Lemma III.1, case (a) applies if there exists some
ε > 0 such that Bε(Λ) ∩ I(G) = Λ. If there is no such ε,
there exists a sequence (zn) ⊂ I(G)\{0} such that zn → 0
as n → ∞. Let ε > 0 be as in Theorem II.2 and let M :=
{n ∈ N : |zn| < ε}. Now, either there are n,m ∈ M such
that zn and zm are linearly independent, or all zn, n ∈ M ,
lie on a line Lz = {tz : t ∈ R}, z 6= 0. In the first case we
apply Corollary II.3 to get G = L2(R), i.e. (b). In the second
case, as I(G) is closed and closed under addition, it follows
that the whole line Lz is contained in I(G) and Lemma III.2
implies G = L2(R).

IV. TFS-INVARIANCE AND DUALITY

We state the following technical lemma without proof. It
shows that in further investigations of TFS-invariance we can
restrict ourselves to separable lattices (i.e. Λ = αZ×βZ) and
TFSs in I(G) of the form ( αm , 0) with m ∈ N\{0}.

Lemma IV.1. Let g ∈ S0(R) and let Λ ⊂ R2 be a lattice, such
that (g,Λ) is a frame for its closed linear span G = G(g,Λ).
If I(G) 6= Λ, then there exist g1 ∈ S0 and a separable lattice
Λ1 = αZ × βZ ⊂ R2 with d(Λ1) = d(Λ) such that (g1,Λ1)
is a frame for its closed linear span G1 := G(g1,Λ1) and
( αm , 0) ∈ I(G1) for some m ∈ N, m > 1 (i.e., T α

m
g1 ∈ G1).

In what follows let g ∈ S0(R), α, β > 0, Λ = αZ × βZ,
let ν ∈ N\{0} be fixed, and assume that (g,Λ) is a frame
for G = G(g,Λ). By γ we denote the canonical dual window

(CDW) of g. That is, we have 〈π(λ1)g, π(λ2)γ〉 = δλ1,λ2
for

λ1, λ2 ∈ Λ. Then the adjoint system F := {Tk/βM`/αg :
k, ` ∈ Z} is a frame for its closed linear span K by [8, Thm.
2.2 (c)]. Note that K = L2(R) if and only if (g,Λ) is a Riesz
sequence (cf.[8, Thm. 2.2 (e)]). Set

Fs :=
{
T k
β
M `ν

α
M s

α
g : k, ` ∈ Z

}
, s = 0, . . . , ν − 1.

Again by [8], F0 is a frame sequence if and only if the system
(g, αν Z × βZ) is a frame sequence. In this case, each Fs is
a frame sequence because Ms/αF0 is, and multiplying the
vectors of a frame sequence by unimodular constants results
in a frame sequence. We set Ls := spanFs, s = 0, . . . , ν−1.
Clearly, we have K = L0 + . . .+ Lν−1 and Ls = M s

α
L0.

In the next proposition the (bounded) cross-frame operator
Sγ,g,1/β,ν/α will play a special role. It is defined by

Sγ,gf := Sγ,g, 1β ,
ν
α
f :=

∑
k,`∈Z

〈
f, T k

β
M `ν

α
γ
〉
T k
β
M `ν

α
g

for f ∈ L2(R). Janssen’s representation of Sγ,g (see [7, Ch.
7.2]) is the following:

Sγ,g = αβ
ν

∑
m,n∈Z

〈g, Tmα
ν
Mnβγ〉Tmαν Mnβ .

The series converges absolutely in operator norm: Due to [7,
Thm. 7.2.1 and Cor. 12.1.12], to conclude this we only need
to verify that γ ∈ S0(R), which follows from [1, Thm. 7].

In the sequel, the symbol u denotes the direct sum of
subspaces. The next theorem characterizes TFS invariance of
G in terms of properties of the adjoint system F .

Theorem IV.2. Let g ∈ S0(R) and assume that (g, αZ×βZ) is
a frame sequence with canonical dual window γ and define the
systems Fs and the spaces K,Ls as above, s = 0, . . . , ν − 1.
Then the following statements are equivalent:

(i) Tα
ν
g ∈ G.

(ii) (αβ)−1Sγ,gM s
α
g = δs0 · g for s = 0, . . . , ν − 1.

(iii) K = L0 u . . .u Lν−1.
(iv)

〈
T k
β
M `

α
γ, g
〉

= 0 for all k, ` ∈ Z, ` /∈ νZ.

If one of (i)–(iv) holds, then Fs is a frame for Ls and the
operator

(αβ)−1Ms/αSγ,gM−s/α

is the (possibly non-orthogonal) projection onto Ls with
respect to the decomposition

L2(R) = (L0 u . . .u Lν−1)⊕K⊥, s = 0, . . . , ν − 1.

Proof. We will frequently use the following fact (see [8, Thm.
2.3]):

(αβ)−1γ is the CDW of F = {T k
β
M `

α
g : k, ` ∈ Z}. (3)

For the rest of the proof we set P := (αβ)−1Sγ,g . We
have P =

∑
m,n cmnTmαν Mnβ with cmn = 1

ν 〈g, Tmαν Mnβγ〉.
Since Tmα

ν
Mnβ commutes with T k

β
M `ν

α
for all m,n, k, ` ∈ Z,

it follows immediately that

PT k
β
M `ν

α
= T k

β
M `ν

α
P. (4)



Using (3), we obtain
ν−1∑
s=0

M s
α
PM− s

α
=

ν−1∑
s=0

∑
m,n

cmnM s
α
Tmα

ν
MnβM− s

α

=
∑
m,n

cmn

(
ν−1∑
s=0

e2πimsν

)
Tmα

ν
Mnβ

= ν
∑
m,n

cmν,nTmαMnβ

=
∑
m,n

〈g, TmαMnβγ〉 · TmαMnβ

= (αβ)−1Sγ,g, 1β ,
1
α

= S(αβ)−1γ,g, 1β ,
1
α

= PK,

(5)

where PK denotes the orthogonal projection onto K. For s =
0, . . . , ν − 1 we have M− s

α
PM s

α
g =

=
1

ν

∑
m,n

〈g, Tmα
ν
Mnβγ〉 ·M− s

α
Tmα

ν
MnβM s

α
g

=
1

ν

∑
m,n

ν−1∑
r=0

〈g, T νm−r
ν αMnβγ〉M− s

α
T νm−r

ν αMnβM s
α
g

=
1

ν

ν−1∑
r=0

e2πi srν T− rαν

∑
m,n

〈T rα
ν
g, TmαMnβγ〉TmαMnβg

=
1

ν

ν−1∑
r=0

e2πi srν · T− rαν PGT rαν g,

(6)

where PG is the orthogonal projection onto G. That is, the
vectors

v = (M− s
α
PM s

α
g)ν−1
s=0 and u = (T− rαν PGT

rα
ν
g)ν−1
s=0

in (L2(R))ν are connected via Fωu =
√
ν ·v, where Fω is the

DFT-matrix Fω = ν−1/2(ωsr)ν−1
s,r=0 with ω = e2πi/ν .

(i)⇔(ii). If Tα
ν
g ∈ G, then also T rα

ν
g ∈ G for all r ∈ Z

and (ii) follows from (6). Conversely, if (ii) holds, then v =
(g, 0, . . . , 0)T and hence u =

√
ν · F ∗ωv = (g, g, . . . , g)T . In

particular, T−α/νPGTα/νg = g, i.e., Tα/νg ∈ G.
(ii)⇒(iii). Since Pg = g, it is a consequence of (4) that

P |L0 = I|L0 . As for s 6= 0 and k, ` ∈ Z,

PT k
β
M `ν

α
M s

α
g = T k

β
M `ν

α
PM s

α
g = 0,

it follows that P |Ls = 0. In general, for r = 0, . . . , ν − 1 we
have Mr/αPM−r/α|Lr = I|Lr and Mr/αPM−r/α|Ls = 0
for s 6= r. Hence, the sum K = L0 u . . .uLν−1 is direct and
Ms/αPM−s/α|K is the projection onto Ls with respect to this
decomposition, s = 0, . . . , ν−1. The fact that Ms/αPM−s/α
is the projection onto Ls with respect to the decomposition
L2(R) = (L0 u . . .u Lν−1)⊕K⊥ follows from (5).

(iii)⇒(ii). The relation P = (αβ)−1Sγ,g and the definition
of Sγ,g show that ranP ⊂ L0. Hence, obviously Pg−g ∈ L0.
On the other hand, (5) implies Pg − g ∈ span{Ls : s =
1, . . . , ν−1}. Thus, Pg = g. Similarly, for s ∈ {1, . . . , ν−1}
we have Ms/αPM−s/αg ∈ Ls, but it also follows from

(5) that Ms/αPM−s/αg ∈ span{Lr : r 6= s}. Hence,
PM−s/αg = 0 for s = 1, . . . , ν − 1. Since P commutes with
M±ν/α (see (4)), we have PM(ν−s)/αg = 0 and therefore
PMs/αg = 0 for s = 1, . . . , ν − 1.

(i)⇒(iv). Note that also (γ,Λ) is a frame sequence and
G = G(γ,Λ). Also, Tα/νg ∈ G iff G is invariant under Tα/ν
iff Tα/νγ ∈ G. Let us consider the setting above with g and
γ interchanged. Define

F∗s :=
{
T k
β
M `ν

α
M s

α
γ : k, ` ∈ Z

}
, s = 0, . . . , ν − 1.

Then, cf. (3), K = L∗0 u . . . u L∗ν−1, where L∗s := spanF∗s .
We have Sg,γ = S∗γ,g . Hence, Ms/αP

∗M−s/α is the projection
onto L∗s with respect to the decomposition L2(R) = (L∗0 u
. . .u L∗ν−1)⊕K. In particular,

L∗0 = ranP ∗ = (kerP )⊥ = (L1 u . . .u Lν−1)⊥ ∩ K⊥.

For k, `,m, n ∈ Z and s = 1, . . . , ν − 1 this implies〈
T k
β
M `ν

α
γ, Tm

β
Mnν

α
M s

α
g
〉

= 0,

which is equivalent to (iv).
(iv)⇒(ii). Since for s = 1, . . . , ν − 1,

PM s
α
g = (αβ)−1

∑
k,`∈Z

〈
M s

α
g, T k

β
M `ν

α
γ
〉
T k
β
M `ν

α
g = 0,

Pg = g follows from (5).

Note that Pf = f for f ∈ L0 means that (αβ)−1γ is a dual
window for the frame sequence F0 = (g, 1

βZ×
ν
αZ). However,

it is possible that γ /∈ L0.
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