
Multiplication-free coordinate descent iteration
for ℓ1-regularized least squares

Nguyen T. Thao∗, Dominik Rzepka†
∗Dept. of EE, City College of New York, CUNY, New York, USA, tnguyen@ccny.cuny.edu

† Dept. of Measurement and Electronics, AGH Univ. of Science and Tech., Kraków, Poland, drzepka@agh.edu.pl

Abstract—We propose a coordinate descent iteration for ℓ1-
regularized least-squares optimization that is free of multipli-
cations. Although a suboptimal version of the ideal coordinate
descent algorithm of Li and Osher [1], it contributes to major
computational savings for only slight convergence degradations.

Index Terms—least squares, ℓ1-regularization, basis pursuit
denoising, lasso, coordinate descent, relaxation, binary scaling,
bit shift, compressed sensing, sparse recovery.

I. INTRODUCTION

Sparse representation has become a fundamental tool for
modern machine learning and signal processing [2]. Finding
sparse approximate solutions of Ax = b (where A is an
M×N matrix) can be performed by minimizing

Fℓ0(x) = ∥Ax− b∥22 + λ∥x∥0. (1)

While finding a minimizer of Fℓ0(x) is an NP-complete prob-
lem, it is possible to obtain efficiently a good approximation of
it. Two main approaches for this are greedy methods (related
to matching pursuit [3], [4]) and relaxation methods (e.g. [5],
[6], see also survey [2]). The latter rely on an ℓ1-penalized
least squares optimization by minimizing

F (x) = ∥Ax− b∥22 + λ∥x∥1. (2)

Greedy methods are fast, but not accurate in finding the
correct support of x. With ℓ1-regularized methods, finding
the correct support is guaranteed as long as the matrix A
obeys certain conditions, but they tend to be slower. In [1],
Li and Osher proposed a relaxation-based coordinate descent
(CD) approach to this optimization, where at each iteration,
F (x) is minimized along one of the coordinate dimensions
of x. CD methods are appealing for their low complexity per
iteration. Recently proposed improvements of CD methods are
parallelization [7], [8] and inexact iterations [9].

Assuming that the column vectors of A are normalized,
we push further the complexity reduction of the CD ℓ1-
regularization by limiting all multiplications to mere binary
scalings. This is made possible by not aiming at an ideal
minimization of F (x) along any given coordinate dimension,
but instead by identifying coordinate displacements that are
powers of 2 while still guaranteeing a decrease of F (x).
Numerical experiments show that the rate of convergence
of our multiplication-free iteration is only slightly degraded

D. Rzepka was supported by the Polish National Center of Science under
Grant DEC-2017/27/B/ST7/03082.

compared to the ideal CD minimization. Meanwhile, the
absence of multiplications allows for substantial computational
savings in hardware (FPGA, ASIC etc.) implementations of
sparse recovery methods [10], [11], [12], [13], [14].

II. STRATEGY OF COORDINATE DESCENT

The goal is to approach a minimizer of F (x) with an
algorithm of the type

x(n+1) = x(n) + αn ein (3)

where ei denotes the ith coordinate vector of RN , (in)n≥0

is some sequence of I := {1, · · ·, N} and (αn)n≥0 is some
sequence in the set

B :=
{
± 2k : k ∈ Z

}
∪ {0}.

Our strategy is to take

αn = δin(x
(n)) (4)

where for each i ∈ I , δi(x) is a real function of RN satisfying
the following conditions:
(a) for all x ∈ RN ,

F
(
x+ δi(x) ei

)
≤ F (x) (5)

with a strict inequality when F (x + αei) is not the
minimized at α = 0,

(b) for all x ∈ RN , δi(x) ∈ B,
(c) the computation of αn = δin(x

(n)) in the iteration (3) can
be implemented without any multiplication or division
but only with binary scalings (besides additions and
elementary binary operations).

III. ONE-DIMENSIONAL CASE

We start with the simple case N = 1. The function F (x)
is reduced to

f(x) := 1
2∥ax− b∥22 + λ|x| (6)

where a,b ∈ RM with ∥a∥2 = 1, λ ≥ 0 and x ∈ R. Our
goal is to find a real function δ(x) satisfying conditions (a)
and (b), which here have the simpler form,
(a) for all x ∈ R,

f(x+ δ(x)) ≤ f(x) (7)

with a strict inequality when f(x+ α) is not minimized
at α = 0.

(b) for all x ∈ R, δ(x) ∈ B.

A. Revisiting the shrinkage function

Let f+(x) and f−(x) be the two quadratic functions defined
by

f±(x) = 1
2∥ax− b∥22 ± λx. (8)

Then,

f(x) =

{
f+(x), x ≥ 0
f−(x), x ≤ 0

= max
(
f−(x), f+(x)

)
. (9)

Let

x̆ := argmin
x∈R

f(x) and x̆± := argmin
x∈R

f±(x).

Since ∥a∥2 = 1, then

f±(x) = 1
2 x

2 − (a⊤b− (±λ)
)
x+ 1

2∥b∥
2
2,

and hence
x̆± = a⊤b− (±λ). (10)

Note that x̆− ≥ x̆+.

Proposition 3.1:

x̆ =

 x̆+, x̆+ > 0
x̆−, x̆− < 0
0, otherwise

. (11)

Proof: If x̆+ > 0, then f
(
x̆+

)
= f+

(
x̆+

)
≤ f+(α) ≤

f(α) for all α ∈ R, so x̆ = x̆+. Similarly, x̆ = x̆− when x̆− <
0. Since x̆− ≥ x̆+, the remaining case is when x̆+ ≤ 0 ≤ x̆−.
By strict convexity, f±(α) is decreasing on

(
−∞, x̆±] and

increasing on
[
x̆±,∞

)
. As f(α) = f−(α) on (−∞, 0] which

is included in
(
−∞, x̆−], then f(α) is decreasing on (−∞, 0].

Similarly, f(α) is increasing on [0,∞). So x̆ = 0.

By injecting (10) into (11), we then retrieve the well-known
function expression [15]

x̆ = shrink(a⊤b, λ)

where

shrink(β, λ) :=

 β−λ, β−λ > 0
β+λ, β+λ < 0
0, otherwise

.

B. Generic displacement function δ(x)

It is clear that condition (a) is satisfied when δ(x) = x̆−x.
It follows from (11) that

x̆− x =

 x̆+− x, x̆+ > 0
x̆−− x, x̆− < 0
−x, otherwise

. (12)

Consider the more general displacement function

δ(x) :=

 ρ(x̆+−x), x+ ρ(x̆+−x) > 0
ρ(x̆−−x), x+ ρ(x̆−−x) < 0
−ρ̂(x), otherwise

(13)

where ρ(·) and ρ̂(·) are some real monotonically increasing
functions. Note that δ(x) = x̆− x when ρ(x) = ρ̂(x) = x for
all x ∈ R. Note also in the general case that there is no conflict

between the first two cases of (13) since ρ(·) is monotonically
increasing and x̆− ≥ x̆+. Our goal is to find a condition on
ρ(·) and ρ̂(·) for condition (a) to be satisfied by δ(x). The
following proposition will be determinant in this search.

Proposition 3.2: Let g(x) be a quadratic function of curva-
ture c > 0, minimized at x̌. For any x ∈ R,

g
(
x+ µ (x̌−x)

)
< g(x) ⇔ x ̸= x̌ and µ ∈ (0, 2).

Proof: Explicitly, g(x) = g(x̌) + c(x−x̌)2 for all x ∈ R.
So g

(
x+µ (x̌−x)

)
= g(x̌)+c(1−µ)2 (x−x̌)2. Then, assuming

that x ̸= x̌, g
(
x+µ (x̌−x)

)
< g(x) is successively equivalent

to (1−µ)2 < (1−0)2, |1−µ| < 1 and finally to µ ∈ (0, 2).

Theorem 3.3: Assume that ρ(·) and ρ̂(·) are monotonically
increasing such that ρ(0) = ρ̂(0) = 0, ρ(x)/x ∈ (0, 2) and
ρ̂(x)/x ∈ (0, 1] for all x ̸= 0. Then the function δ(x) defined
by (13) satisfies condition (a).

Proof: This proof is complex due to the multiplicity of
cases. In particular, the three cases of (11) and (13) do not
match, except when x = x̆. We start with this particular value
of x and show that δ(x̆) = 0. In the first case of (11), we have
x̆ = x̆+ > 0. Hence, ρ(x̆+−x) + x̆ = ρ(0) + x̆ = x̆ > 0. This
falls in the first case of (13) which implies that δ(x̆) = ρ(0) =
0. In a similar manner, we obtain δ(x̆) = 0 in the second case
of (11). In the third case of (11), we have x̆+ ≤ 0 ≤ x̆− and
x̆ = 0. By assumption on ρ(·), ρ(x) and x have the same sign.
So ρ(x̆+) ≤ 0 ≤ ρ(x̆−). This falls in the third case of (13)
for x = x̆, since x̆ = 0. Hence δ(x̆) = −ρ̂(x̆) = 0. Therefore,
(7) is trivially satisfied at x = x̆.

We now consider x ̸= x̆. From the assumptions on ρ(·) and
ρ̂(·), we have for all u ̸= 0,

∃µ ∈ (0, 2), µ̂ ∈ (0, 1], ρ(u) = µu and ρ̂(u) = µ̂ u. (14)

Note that µ and µ̂ depend on u. This is also true at u = 0
where one can take µ = µ̂ = 1 for example. Let us label the
three cases of (13) ‘case 1’, ‘case 2’ and ‘case 3’, respectively.
We are going to show that the following three properties,

x+ δ(x) ≥ 0, (15)
∃µ ∈ (0, 2), δ(x) = µ (x̆+− x), (16)

x ̸= x̆+, (17)

are satisfied in case 1 and in case 3 with x > 0.
Assume case 1. We have x + ρ(x̆+−x) > 0 and δ(x) =

ρ(x̆+−x). So (15) is straightforward and (16) results directly
from (14). If x = x̆+, we obtain successively that ρ(x̆+−x) =
0, x̆+ = x > 0, x̆ = x̆+ according to (11), and finally x = x̆.
So our assumption that x ̸= x̆ implies (17).

Assume now case 3 with x > 0. From case 3, we have

x+ ρ(x̆+−x) ≤ 0 ≤ x+ ρ(x̆−−x) and δ(x) = −ρ̂(x). (18)

Condition (15) is true since x + δ(x) = x − ρ̂(x) which has
the same sign as x due to (14). Since x > 0, 0 < ρ̂(x) ≤ x ≤

−ρ(x̆+−x) = −µ (x̆+−x) for some µ ∈ (0, 2) according to
(14). Then, there exists µ′ ∈ (0, µ] ⊂ (0, 2) such that ρ̂(x) =
−µ′ (x̆+−x). This leads to (16). Since x > 0, assuming that
x = x̆+ would imply that x̆ = x̆+ according to (11), which
contradicts the assumption that x ̸= x̆. This justifies (17).

It follows from (9) and (15) that

f(x+ δ(x)) = f+(x+ δ(x)) and f+(x) ≤ f(x). (19)

It results from Proposition 3.2 with g = f+, (16) and (17)
that

f+(x+ δ(x)) < f+(x). (20)

We thus obtain the strict inequality of (7) by combining (19)
and (20).

One obtains in case 2 and in case 3 with x < 0 equations
similar to (15)-(20), where the inequality is reversed in (15),
and the superscript + is replaced by − in (16)-(20). This also
leads to the strict inequality of (7). What remains is case 3 with
x = 0. From (18), we have ρ(x̆+) ≤ 0 ≤ ρ(x̆−). According to
(14), µ+x̆+ ≤ 0 ≤ µ−x̆− for some µ± > 0. This implies that
x̆ = 0 according to (11), which contradicts the assumption
that x ̸= x̆. So this case is not possible.

C. Binary relaxed displacement

To achieve condition (b), we need to force ρ(·) and ρ̂(·) to
have values in B while satisfying the condition of Theorem
3.3. There are various ways to do so. As a simple solution,
we propose to take for ρ(·) the odd function such that

ρ(u) = max
2k≤u

2k (21)

for all u > 0, and set ρ̂(·) = ρ(·). By construction, ρ(0) = 0
and for any u ̸= 0, ρ(u) = sign(u) 2k where k is the position
of the most significant 1 in the binary expansion of |u|. When
u > 0, it is clear that ρ(u) ≤ u < 2ρ(u). So u/ρ(u) ∈ [1, 2),
or equivalently, ρ(u)/u ∈ (12 , 1]. This remains true for all
u ̸= 0 since ρ(u) has the same sign as u.

IV. N -DIMENSIONAL CASE

We return to the minimization of the general function F (x)
of (2). Calling ai the ith column vector of A, we assume
∥ai∥2 = 1 for all i ∈ I .

A. Design of δi(x)

Let x = (x1, · · · , xN) ∈ RN and i ∈ I be given. We can
write

Ax− b = ai xi − bi (22)

where bi := b −
∑

j∈I\{i} aj xj . We can therefore express
F (x) from (2) as

F (x) = fi(xi) + ci (23)

where for any x ∈ R,

fi(x) :=
1
2∥ai x− bi∥22 + λ|x|

and ci := λ
∑

j∈I\{i} |xj |. Although bi and ci depend on x,
note that they do not depend on its ith component. Therefore,

F (x+ αei) = fi(xi + α) + ci

for any α ∈ R. By applying Theorem 3.3 to fi(x), we have

fi(xi + αi) ≤ fi(xi) (24)

where

αi :=

 ρ(x̆+
i −xi), xi + ρ(x̆+

i −xi) > 0
ρ(x̆−

i −xi), xi + ρ(x̆−
i −xi) < 0

−ρ̂(xi), otherwise
(25)

and
x̆±
i = a⊤i bi − (±λ).

The inequality of (24) is moreover strict when xi ̸= x̆i :=
argminx fi(x). It then follows from (23) that

F (x+ αiei) ≤ F (x)

with a strict inequality when F (x+ αei) is not minimized at
α = 0. Since a⊤i ai = 1, we have

x̆±
i − xi = a⊤i bi − (±λ)− a⊤i ai xi = ri − (±λ) (26)

where ri := a⊤i (bi−aixi) = a⊤i (b−Ax) due to (22). Define

G := A⊤A and c := A⊤b.

Then, ri is the ith component of the vector

r := Rx where Rx := c−Gx. (27)

Define the function

di(x, r) :=

 α+, xi + α+> 0
α−, xi + α−< 0

−ρ̂(xi), otherwise
(28)

where α± := ρ
(
ri − (±λ)

)
. (29)

By injecting (26) into (25), we have αi = di(x, r) where
r := Rx. Condition (a) is then satisfied by the function

δi(x) := di(x,Rx). (30)

Condition (b) is met by specifically taking ρ(·) defined in
Section III-C and ρ̂(·) = ρ(·).
B. Multiplication-free iteration

The function δi(x) does not directly satisfy condition (c) as
αn = δin(x

(n)) = din(x
(n), r(n)) where

r(n) := Rx(n), (31)

which involves matrix multiplications. However, as x(n) satis-
fies the recursion (3), r(n) yields a simple recursive relation.
Indeed, after subtracting b from the members of the relation
Gx(n+1) = Gx(n) + αngin where

gi := Gei = A⊤ai,

(31) and (27) imply that r(n+1) = r(n) − αngin . The iteration
of (3) and (4) can then be equivalently implemented by the
system

αn = din(x
(n), r(n)) (32a)

x(n+1) = x(n) + αn ein (32b)
r(n+1) = r(n) − αn gin . (32c)

Starting with x(0) = 0, we have r(0) = c. Every multiplication
in this iteration is a binary scaling.

0 1000 2000
0

20

40

60

80

100

120

140

(i)

(ii)

(iii)

(iv)

n

F
(x

(n
)
)

λ = 0.02

0 1000 2000
60

70

80

90

100

110

120

130

140

(i)

(ii)

(iii)

(iv)

n

F
(x

(n
)
)

λ = 0.2

(i) ideal, cyclic

(ii) binary, cyclic

(iii) ideal, greedy

(iv) binary, greedy

(i) ideal, cyclic

(ii) binary, cyclic

(iii) ideal, greedy

(iv) binary, greedy

Fig. 1. Numerical results

C. Cyclic and greedy control

Until now, we have not specified the choice of control
sequence (in)n≥0. The most basic option is the cyclic control
in := (n modN)+1. Better results are obtained with control
sequences that are adaptive with the evolution of the current
estimate x(n). In the case of ideal coordinate descent, it was
proposed in [1] to choose at each iteration n the index in ∈ I
that maximizes ∥x(n+1)−x(n)∥2. With our multiplication-free
iteration, this control amounts to taking

in := argmax
i∈I

∣∣din(x(n), r(n))
∣∣. (33)

This control which we will label as “greedy” in this paper
does not involve any multiplication.

V. EXPERIMENTS

As in [1], we performed our numerical tests with a 256×512
matrix A whose entries are randomly and uniformly drawn in
[0, 1] before the column vectors are normalized. In Figure 1,
we plot the evolution of F (x(n)) with respect to the iteration
number n, where x(n) results from the iteration of the system
(32), for various choices of sequence (in)n≥0 and functions
ρ(·) and ρ̂(·) in the definition (28) of di(x, r). The cyclic
control in := (n modN) + 1 is used in (i) and (ii), while the
greedy control of (33) is used in (iii) and (iv). The functions
ρ(x) = ρ̂(x) = x are used in (i) and (ii). They reproduce the
ideal CD minimization of [1]. Meanwhile, the binary valued
functions ρ(·) and ρ̂(·) defined in Section III-C are used in (iii)
and (iv). In this case, all multiplications are reduced to binary
scalings. In spite of this outstanding complexity reduction, the
consequent degradation in the minimization of F (x) appears
to be quite limited (compare (ii) and (iv) with (i) and (iii),
respectively).

VI. BLOCK COORDINATE DESCENT

A block version of (32) can be achieved by iterating the
more general system

αn = Dn(x
(n), r(n)) (34a)

x(n+1) = x(n) +αn (34b)
r(n+1) = r(n) −Gαn (34c)

where
Dn(x, r) :=

∑
i∈I w

(n)

i di(x, r) ei

for some non-negative coefficients w(n)

i . As (34c) still results
from (31), it follows from (30) that

x(n+1) = x(n) +
∑

i∈I w
(n)

i δi(x
(n)) ei.

By having
∑

i∈I w
(n)

i = 1 for each n ≥ 0, one easily shows
that F (x(n+1)) ≤ F (x(n)) given that F is convex and (5) is
satisfied for all i ∈ I . The system (34) is then made free of
multiplication by adding the constraint that w(n)

i is a power of
2 for every i and n.

REFERENCES

[1] Y. Li and S. Osher, “Coordinate descent optimization for ℓ1 minimiza-
tion with application to compressed sensing; a greedy algorithm,” Inverse
Problems and Imaging, vol. 3, no. 3, pp. 487–503, 2009.

[2] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse rep-
resentation: algorithms and applications,” IEEE access, vol. 3, pp. 490–
530, 2015.

[3] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictio-
naries,” tech. rep., Courant Institute of Mathematical Sciences New York
United States, 1993.

[4] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of
underdetermined systems of linear equations by stagewise orthogonal
matching pursuit,” IEEE Transactions on Information Theory, vol. 58,
no. 2, pp. 1094–1121, 2012.

[5] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R⃝ in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[7] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[8] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for
big data optimization,” Mathematical Programming, vol. 156, no. 1-2,
pp. 433–484, 2016.

[9] R. Tappenden, P. Richtárik, and J. Gondzio, “Inexact coordinate descent:
complexity and preconditioning,” Journal of Optimization Theory and
Applications, vol. 170, no. 1, pp. 144–176, 2016.

[10] F. Ren, R. Dorrace, W. Xu, and D. Marković, “A single-precision
compressive sensing signal reconstruction engine on FPGAs,” in Field
Programmable Logic and Applications (FPL), 2013 23rd International
Conference on, pp. 1–4, IEEE, 2013.

[11] H. D. R. Aniles, “FPGA-based compressed sensing reconstruction of
sparse signals,” Master’s thesis, Instituto Nacional de Astrofísica, Óptica
y Electrónica, 2014.

[12] Y. Quan, Y. Li, X. Gao, and M. Xing, “FPGA implementation of real-
time compressive sensing with partial fourier dictionary,” International
Journal of Antennas and Propagation, vol. 2016, 2016.

[13] T. Remez, O. Litany, S. Yoseff, H. Haim, and A. Bronstein, “FPGA
system for real-time computational extended depth of field imaging
using phase aperture coding,” arXiv preprint arXiv:1608.01074, 2016.

[14] S. Kim, U. Yun, J. Jang, G. Seo, J. Kang, H.-N. Lee, and M. Lee,
“Reduced computational complexity orthogonal matching pursuit using
a novel partitioned inversion technique for compressive sensing,” Elec-
tronics, vol. 7, no. 9, p. 206, 2018.

[15] W. J. Fu, “Penalized regressions: the bridge versus the lasso,” J. Comput.
Graph. Statist., vol. 7, no. 3, pp. 397–416, 1998.

