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Abstract—We propose a coordinate descent iteration for ℓ1-
regularized least-squares optimization that is free of multipli-
cations. Although a suboptimal version of the ideal coordinate
descent algorithm of Li and Osher [1], it contributes to major
computational savings for only slight convergence degradations.

Index Terms—least squares, ℓ1-regularization, basis pursuit
denoising, lasso, coordinate descent, relaxation, binary scaling,
bit shift, compressed sensing, sparse recovery.

I. INTRODUCTION

Sparse representation has become a fundamental tool for
modern machine learning and signal processing [2]. Finding
sparse approximate solutions of Ax = b (where A is an
M×N matrix) can be performed by minimizing

Fℓ0(x) = ∥Ax− b∥22 + λ∥x∥0. (1)

While finding a minimizer of Fℓ0(x) is an NP-complete prob-
lem, it is possible to obtain efficiently a good approximation of
it. Two main approaches for this are greedy methods (related
to matching pursuit [3], [4]) and relaxation methods (e.g. [5],
[6], see also survey [2]). The latter rely on an ℓ1-penalized
least squares optimization by minimizing

F (x) = ∥Ax− b∥22 + λ∥x∥1. (2)

Greedy methods are fast, but not accurate in finding the
correct support of x. With ℓ1-regularized methods, finding
the correct support is guaranteed as long as the matrix A
obeys certain conditions, but they tend to be slower. In [1],
Li and Osher proposed a relaxation-based coordinate descent
(CD) approach to this optimization, where at each iteration,
F (x) is minimized along one of the coordinate dimensions
of x. CD methods are appealing for their low complexity per
iteration. Recently proposed improvements of CD methods are
parallelization [7], [8] and inexact iterations [9].

Assuming that the column vectors of A are normalized,
we push further the complexity reduction of the CD ℓ1-
regularization by limiting all multiplications to mere binary
scalings. This is made possible by not aiming at an ideal
minimization of F (x) along any given coordinate dimension,
but instead by identifying coordinate displacements that are
powers of 2 while still guaranteeing a decrease of F (x).
Numerical experiments show that the rate of convergence
of our multiplication-free iteration is only slightly degraded
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compared to the ideal CD minimization. Meanwhile, the
absence of multiplications allows for substantial computational
savings in hardware (FPGA, ASIC etc.) implementations of
sparse recovery methods [10], [11], [12], [13], [14].

II. STRATEGY OF COORDINATE DESCENT

The goal is to approach a minimizer of F (x) with an
algorithm of the type

x(n+1) = x(n) + αn ein (3)

where ei denotes the ith coordinate vector of RN , (in)n≥0

is some sequence of I := {1, · · ·, N} and (αn)n≥0 is some
sequence in the set

B :=
{
± 2k : k ∈ Z

}
∪ {0}.

Our strategy is to take

αn = δin(x
(n)) (4)

where for each i ∈ I , δi(x) is a real function of RN satisfying
the following conditions:
(a) for all x ∈ RN ,

F
(
x+ δi(x) ei

)
≤ F (x) (5)

with a strict inequality when F (x + αei) is not the
minimized at α = 0,

(b) for all x ∈ RN , δi(x) ∈ B,
(c) the computation of αn = δin(x

(n)) in the iteration (3) can
be implemented without any multiplication or division
but only with binary scalings (besides additions and
elementary binary operations).

III. ONE-DIMENSIONAL CASE

We start with the simple case N = 1. The function F (x)
is reduced to

f(x) := 1
2∥ax− b∥22 + λ|x| (6)

where a,b ∈ RM with ∥a∥2 = 1, λ ≥ 0 and x ∈ R. Our
goal is to find a real function δ(x) satisfying conditions (a)
and (b), which here have the simpler form,
(a) for all x ∈ R,

f(x+ δ(x)) ≤ f(x) (7)

with a strict inequality when f(x+ α) is not minimized
at α = 0.

(b) for all x ∈ R, δ(x) ∈ B.



A. Revisiting the shrinkage function

Let f+(x) and f−(x) be the two quadratic functions defined
by

f±(x) = 1
2∥ax− b∥22 ± λx. (8)

Then,

f(x) =

{
f+(x), x ≥ 0
f−(x), x ≤ 0

= max
(
f−(x), f+(x)

)
. (9)

Let

x̆ := argmin
x∈R

f(x) and x̆± := argmin
x∈R

f±(x).

Since ∥a∥2 = 1, then

f±(x) = 1
2 x

2 − (a⊤b− (±λ)
)
x+ 1

2∥b∥
2
2,

and hence
x̆± = a⊤b− (±λ). (10)

Note that x̆− ≥ x̆+.

Proposition 3.1:

x̆ =

 x̆+, x̆+ > 0
x̆−, x̆− < 0
0, otherwise

. (11)

Proof: If x̆+ > 0, then f
(
x̆+

)
= f+

(
x̆+

)
≤ f+(α) ≤

f(α) for all α ∈ R, so x̆ = x̆+. Similarly, x̆ = x̆− when x̆− <
0. Since x̆− ≥ x̆+, the remaining case is when x̆+ ≤ 0 ≤ x̆−.
By strict convexity, f±(α) is decreasing on

(
−∞, x̆±] and

increasing on
[
x̆±,∞

)
. As f(α) = f−(α) on (−∞, 0] which

is included in
(
−∞, x̆−], then f(α) is decreasing on (−∞, 0].

Similarly, f(α) is increasing on [0,∞). So x̆ = 0.

By injecting (10) into (11), we then retrieve the well-known
function expression [15]

x̆ = shrink(a⊤b, λ)

where

shrink(β, λ) :=

 β−λ, β−λ > 0
β+λ, β+λ < 0
0, otherwise

.

B. Generic displacement function δ(x)

It is clear that condition (a) is satisfied when δ(x) = x̆−x.
It follows from (11) that

x̆− x =

 x̆+− x, x̆+ > 0
x̆−− x, x̆− < 0
−x, otherwise

. (12)

Consider the more general displacement function

δ(x) :=

 ρ(x̆+−x), x+ ρ(x̆+−x) > 0
ρ(x̆−−x), x+ ρ(x̆−−x) < 0
−ρ̂(x), otherwise

(13)

where ρ(·) and ρ̂(·) are some real monotonically increasing
functions. Note that δ(x) = x̆− x when ρ(x) = ρ̂(x) = x for
all x ∈ R. Note also in the general case that there is no conflict

between the first two cases of (13) since ρ(·) is monotonically
increasing and x̆− ≥ x̆+. Our goal is to find a condition on
ρ(·) and ρ̂(·) for condition (a) to be satisfied by δ(x). The
following proposition will be determinant in this search.

Proposition 3.2: Let g(x) be a quadratic function of curva-
ture c > 0, minimized at x̌. For any x ∈ R,

g
(
x+ µ (x̌−x)

)
< g(x) ⇔ x ̸= x̌ and µ ∈ (0, 2).

Proof: Explicitly, g(x) = g(x̌) + c(x−x̌)2 for all x ∈ R.
So g

(
x+µ (x̌−x)

)
= g(x̌)+c(1−µ)2 (x−x̌)2. Then, assuming

that x ̸= x̌, g
(
x+µ (x̌−x)

)
< g(x) is successively equivalent

to (1−µ)2 < (1−0)2, |1−µ| < 1 and finally to µ ∈ (0, 2).

Theorem 3.3: Assume that ρ(·) and ρ̂(·) are monotonically
increasing such that ρ(0) = ρ̂(0) = 0, ρ(x)/x ∈ (0, 2) and
ρ̂(x)/x ∈ (0, 1] for all x ̸= 0. Then the function δ(x) defined
by (13) satisfies condition (a).

Proof: This proof is complex due to the multiplicity of
cases. In particular, the three cases of (11) and (13) do not
match, except when x = x̆. We start with this particular value
of x and show that δ(x̆) = 0. In the first case of (11), we have
x̆ = x̆+ > 0. Hence, ρ(x̆+−x) + x̆ = ρ(0) + x̆ = x̆ > 0. This
falls in the first case of (13) which implies that δ(x̆) = ρ(0) =
0. In a similar manner, we obtain δ(x̆) = 0 in the second case
of (11). In the third case of (11), we have x̆+ ≤ 0 ≤ x̆− and
x̆ = 0. By assumption on ρ(·), ρ(x) and x have the same sign.
So ρ(x̆+) ≤ 0 ≤ ρ(x̆−). This falls in the third case of (13)
for x = x̆, since x̆ = 0. Hence δ(x̆) = −ρ̂(x̆) = 0. Therefore,
(7) is trivially satisfied at x = x̆.

We now consider x ̸= x̆. From the assumptions on ρ(·) and
ρ̂(·), we have for all u ̸= 0,

∃µ ∈ (0, 2), µ̂ ∈ (0, 1], ρ(u) = µu and ρ̂(u) = µ̂ u. (14)

Note that µ and µ̂ depend on u. This is also true at u = 0
where one can take µ = µ̂ = 1 for example. Let us label the
three cases of (13) ‘case 1’, ‘case 2’ and ‘case 3’, respectively.
We are going to show that the following three properties,

x+ δ(x) ≥ 0, (15)
∃µ ∈ (0, 2), δ(x) = µ (x̆+− x), (16)

x ̸= x̆+, (17)

are satisfied in case 1 and in case 3 with x > 0.
Assume case 1. We have x + ρ(x̆+−x) > 0 and δ(x) =

ρ(x̆+−x). So (15) is straightforward and (16) results directly
from (14). If x = x̆+, we obtain successively that ρ(x̆+−x) =
0, x̆+ = x > 0, x̆ = x̆+ according to (11), and finally x = x̆.
So our assumption that x ̸= x̆ implies (17).

Assume now case 3 with x > 0. From case 3, we have

x+ ρ(x̆+−x) ≤ 0 ≤ x+ ρ(x̆−−x) and δ(x) = −ρ̂(x). (18)

Condition (15) is true since x + δ(x) = x − ρ̂(x) which has
the same sign as x due to (14). Since x > 0, 0 < ρ̂(x) ≤ x ≤



−ρ(x̆+−x) = −µ (x̆+−x) for some µ ∈ (0, 2) according to
(14). Then, there exists µ′ ∈ (0, µ] ⊂ (0, 2) such that ρ̂(x) =
−µ′ (x̆+−x). This leads to (16). Since x > 0, assuming that
x = x̆+ would imply that x̆ = x̆+ according to (11), which
contradicts the assumption that x ̸= x̆. This justifies (17).

It follows from (9) and (15) that

f(x+ δ(x)) = f+(x+ δ(x)) and f+(x) ≤ f(x). (19)

It results from Proposition 3.2 with g = f+, (16) and (17)
that

f+(x+ δ(x)) < f+(x). (20)

We thus obtain the strict inequality of (7) by combining (19)
and (20).

One obtains in case 2 and in case 3 with x < 0 equations
similar to (15)-(20), where the inequality is reversed in (15),
and the superscript + is replaced by − in (16)-(20). This also
leads to the strict inequality of (7). What remains is case 3 with
x = 0. From (18), we have ρ(x̆+) ≤ 0 ≤ ρ(x̆−). According to
(14), µ+x̆+ ≤ 0 ≤ µ−x̆− for some µ± > 0. This implies that
x̆ = 0 according to (11), which contradicts the assumption
that x ̸= x̆. So this case is not possible.

C. Binary relaxed displacement

To achieve condition (b), we need to force ρ(·) and ρ̂(·) to
have values in B while satisfying the condition of Theorem
3.3. There are various ways to do so. As a simple solution,
we propose to take for ρ(·) the odd function such that

ρ(u) = max
2k≤u

2k (21)

for all u > 0, and set ρ̂(·) = ρ(·). By construction, ρ(0) = 0
and for any u ̸= 0, ρ(u) = sign(u) 2k where k is the position
of the most significant 1 in the binary expansion of |u|. When
u > 0, it is clear that ρ(u) ≤ u < 2ρ(u). So u/ρ(u) ∈ [1, 2),
or equivalently, ρ(u)/u ∈ ( 12 , 1]. This remains true for all
u ̸= 0 since ρ(u) has the same sign as u.

IV. N -DIMENSIONAL CASE

We return to the minimization of the general function F (x)
of (2). Calling ai the ith column vector of A, we assume
∥ai∥2 = 1 for all i ∈ I .

A. Design of δi(x)

Let x = (x1, · · · , xN ) ∈ RN and i ∈ I be given. We can
write

Ax− b = ai xi − bi (22)

where bi := b −
∑

j∈I\{i} aj xj . We can therefore express
F (x) from (2) as

F (x) = fi(xi) + ci (23)

where for any x ∈ R,

fi(x) :=
1
2∥ai x− bi∥22 + λ|x|

and ci := λ
∑

j∈I\{i} |xj |. Although bi and ci depend on x,
note that they do not depend on its ith component. Therefore,

F (x+ αei) = fi(xi + α) + ci

for any α ∈ R. By applying Theorem 3.3 to fi(x), we have

fi(xi + αi) ≤ fi(xi) (24)

where

αi :=

 ρ(x̆+
i −xi), xi + ρ(x̆+

i −xi) > 0
ρ(x̆−

i −xi), xi + ρ(x̆−
i −xi) < 0

−ρ̂(xi), otherwise
(25)

and
x̆±
i = a⊤i bi − (±λ).

The inequality of (24) is moreover strict when xi ̸= x̆i :=
argminx fi(x). It then follows from (23) that

F (x+ αiei) ≤ F (x)

with a strict inequality when F (x+ αei) is not minimized at
α = 0. Since a⊤i ai = 1, we have

x̆±
i − xi = a⊤i bi − (±λ)− a⊤i ai xi = ri − (±λ) (26)

where ri := a⊤i (bi−aixi) = a⊤i (b−Ax) due to (22). Define

G := A⊤A and c := A⊤b.

Then, ri is the ith component of the vector

r := Rx where Rx := c−Gx. (27)

Define the function

di(x, r) :=

 α+, xi + α+> 0
α−, xi + α−< 0

−ρ̂(xi), otherwise
(28)

where α± := ρ
(
ri − (±λ)

)
. (29)

By injecting (26) into (25), we have αi = di(x, r) where
r := Rx. Condition (a) is then satisfied by the function

δi(x) := di(x,Rx). (30)

Condition (b) is met by specifically taking ρ(·) defined in
Section III-C and ρ̂(·) = ρ(·).
B. Multiplication-free iteration

The function δi(x) does not directly satisfy condition (c) as
αn = δin(x

(n)) = din(x
(n), r(n)) where

r(n) := Rx(n), (31)

which involves matrix multiplications. However, as x(n) satis-
fies the recursion (3), r(n) yields a simple recursive relation.
Indeed, after subtracting b from the members of the relation
Gx(n+1) = Gx(n) + αngin where

gi := Gei = A⊤ai,

(31) and (27) imply that r(n+1) = r(n) − αngin . The iteration
of (3) and (4) can then be equivalently implemented by the
system

αn = din(x
(n), r(n)) (32a)

x(n+1) = x(n) + αn ein (32b)
r(n+1) = r(n) − αn gin . (32c)

Starting with x(0) = 0, we have r(0) = c. Every multiplication
in this iteration is a binary scaling.
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Fig. 1. Numerical results

C. Cyclic and greedy control

Until now, we have not specified the choice of control
sequence (in)n≥0. The most basic option is the cyclic control
in := (n modN)+1. Better results are obtained with control
sequences that are adaptive with the evolution of the current
estimate x(n). In the case of ideal coordinate descent, it was
proposed in [1] to choose at each iteration n the index in ∈ I
that maximizes ∥x(n+1)−x(n)∥2. With our multiplication-free
iteration, this control amounts to taking

in := argmax
i∈I

∣∣din(x(n), r(n))
∣∣. (33)

This control which we will label as “greedy” in this paper
does not involve any multiplication.

V. EXPERIMENTS

As in [1], we performed our numerical tests with a 256×512
matrix A whose entries are randomly and uniformly drawn in
[0, 1] before the column vectors are normalized. In Figure 1,
we plot the evolution of F (x(n)) with respect to the iteration
number n, where x(n) results from the iteration of the system
(32), for various choices of sequence (in)n≥0 and functions
ρ(·) and ρ̂(·) in the definition (28) of di(x, r). The cyclic
control in := (n modN) + 1 is used in (i) and (ii), while the
greedy control of (33) is used in (iii) and (iv). The functions
ρ(x) = ρ̂(x) = x are used in (i) and (ii). They reproduce the
ideal CD minimization of [1]. Meanwhile, the binary valued
functions ρ(·) and ρ̂(·) defined in Section III-C are used in (iii)
and (iv). In this case, all multiplications are reduced to binary
scalings. In spite of this outstanding complexity reduction, the
consequent degradation in the minimization of F (x) appears
to be quite limited (compare (ii) and (iv) with (i) and (iii),
respectively).

VI. BLOCK COORDINATE DESCENT

A block version of (32) can be achieved by iterating the
more general system

αn = Dn(x
(n), r(n)) (34a)

x(n+1) = x(n) +αn (34b)
r(n+1) = r(n) −Gαn (34c)

where
Dn(x, r) :=

∑
i∈I w

(n)

i di(x, r) ei

for some non-negative coefficients w(n)

i . As (34c) still results
from (31), it follows from (30) that

x(n+1) = x(n) +
∑

i∈I w
(n)

i δi(x
(n)) ei.

By having
∑

i∈I w
(n)

i = 1 for each n ≥ 0, one easily shows
that F (x(n+1)) ≤ F (x(n)) given that F is convex and (5) is
satisfied for all i ∈ I . The system (34) is then made free of
multiplication by adding the constraint that w(n)

i is a power of
2 for every i and n.
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