Multiplication-free coordinate descent iteration for ℓ_{1}-regularized least squares

Nguyen T. Thao*, Dominik Rzepka ${ }^{\dagger}$
*Dept. of EE, City College of New York, CUNY, New York, USA, tnguyen@ccny.cuny.edu
\dagger Dept. of Measurement and Electronics, AGH Univ. of Science and Tech., Kraków, Poland, drzepka@agh.edu.pl

Abstract

We propose a coordinate descent iteration for ℓ_{1} regularized least-squares optimization that is free of multiplications. Although a suboptimal version of the ideal coordinate descent algorithm of Li and Osher [1], it contributes to major computational savings for only slight convergence degradations.

Index Terms-least squares, ℓ_{1}-regularization, basis pursuit denoising, lasso, coordinate descent, relaxation, binary scaling, bit shift, compressed sensing, sparse recovery.

I. Introduction

Sparse representation has become a fundamental tool for modern machine learning and signal processing [2]. Finding sparse approximate solutions of $A x=b$ (where A is an $M \times N$ matrix) can be performed by minimizing

$$
\begin{equation*}
F_{\ell_{0}}(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{0} \tag{1}
\end{equation*}
$$

While finding a minimizer of $F_{\ell_{0}}(\mathbf{x})$ is an NP-complete problem, it is possible to obtain efficiently a good approximation of it. Two main approaches for this are greedy methods (related to matching pursuit [3], [4]) and relaxation methods (e.g. [5], [6], see also survey [2]). The latter rely on an ℓ_{1}-penalized least squares optimization by minimizing

$$
\begin{equation*}
F(\mathbf{x})=\|\mathrm{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1} \tag{2}
\end{equation*}
$$

Greedy methods are fast, but not accurate in finding the correct support of \mathbf{x}. With ℓ_{1}-regularized methods, finding the correct support is guaranteed as long as the matrix A obeys certain conditions, but they tend to be slower. In [1], Li and Osher proposed a relaxation-based coordinate descent (CD) approach to this optimization, where at each iteration, $F(\mathbf{x})$ is minimized along one of the coordinate dimensions of \mathbf{x}. CD methods are appealing for their low complexity per iteration. Recently proposed improvements of CD methods are parallelization [7], [8] and inexact iterations [9].

Assuming that the column vectors of A are normalized, we push further the complexity reduction of the $\mathrm{CD} \ell_{1}$ regularization by limiting all multiplications to mere binary scalings. This is made possible by not aiming at an ideal minimization of $F(\mathbf{x})$ along any given coordinate dimension, but instead by identifying coordinate displacements that are powers of 2 while still guaranteeing a decrease of $F(\mathbf{x})$. Numerical experiments show that the rate of convergence of our multiplication-free iteration is only slightly degraded

[^0]compared to the ideal CD minimization. Meanwhile, the absence of multiplications allows for substantial computational savings in hardware (FPGA, ASIC etc.) implementations of sparse recovery methods [10], [11], [12], [13], [14].

II. Strategy of coordinate descent

The goal is to approach a minimizer of $F(\mathbf{x})$ with an algorithm of the type

$$
\begin{equation*}
\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}+\alpha_{n} \mathbf{e}_{i_{n}} \tag{3}
\end{equation*}
$$

where \mathbf{e}_{i} denotes the i th coordinate vector of $\mathbb{R}^{N},\left(i_{n}\right)_{n \geq 0}$ is some sequence of $I:=\{1, \cdots, N\}$ and $\left(\alpha_{n}\right)_{n \geq 0}$ is some sequence in the set

$$
B:=\left\{ \pm 2^{k}: k \in \mathbb{Z}\right\} \cup\{0\}
$$

Our strategy is to take

$$
\begin{equation*}
\alpha_{n}=\delta_{i_{n}}\left(\mathbf{x}^{(n)}\right) \tag{4}
\end{equation*}
$$

where for each $i \in I, \delta_{i}(\mathbf{x})$ is a real function of \mathbb{R}^{N} satisfying the following conditions:
(a) for all $\mathrm{x} \in \mathbb{R}^{N}$,

$$
\begin{equation*}
F\left(\mathbf{x}+\delta_{i}(\mathbf{x}) \mathbf{e}_{i}\right) \leq F(\mathbf{x}) \tag{5}
\end{equation*}
$$

with a strict inequality when $F\left(\mathbf{x}+\alpha \mathbf{e}_{i}\right)$ is not the minimized at $\alpha=0$,
(b) for all $\mathbf{x} \in \mathbb{R}^{N}, \delta_{i}(\mathbf{x}) \in B$,
(c) the computation of $\alpha_{n}=\delta_{i_{n}}\left(\mathbf{x}^{(n)}\right)$ in the iteration (3) can be implemented without any multiplication or division but only with binary scalings (besides additions and elementary binary operations).

III. ONE-DIMENSIONAL CASE

We start with the simple case $N=1$. The function $F(\mathbf{x})$ is reduced to

$$
\begin{equation*}
f(x):=\frac{1}{2}\|\mathbf{a} x-\mathbf{b}\|_{2}^{2}+\lambda|x| \tag{6}
\end{equation*}
$$

where $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{M}$ with $\|\mathbf{a}\|_{2}=1, \lambda \geq 0$ and $x \in \mathbb{R}$. Our goal is to find a real function $\delta(x)$ satisfying conditions (a) and (b), which here have the simpler form,
(a) for all $x \in \mathbb{R}$,

$$
\begin{equation*}
f(x+\delta(x)) \leq f(x) \tag{7}
\end{equation*}
$$

with a strict inequality when $f(x+\alpha)$ is not minimized at $\alpha=0$.
(b) for all $x \in \mathbb{R}, \delta(x) \in B$.

A. Revisiting the shrinkage function

Let $f^{+}(x)$ and $f^{-}(x)$ be the two quadratic functions defined by

$$
\begin{equation*}
f^{ \pm}(x)=\frac{1}{2}\|\mathbf{a} x-\mathbf{b}\|_{2}^{2} \pm \lambda x \tag{8}
\end{equation*}
$$

Then,

$$
f(x)=\left\{\begin{array}{ll}
f^{+}(x), & x \geq 0 \tag{9}\\
f^{-}(x), & x \leq 0
\end{array}=\max \left(f^{-}(x), f^{+}(x)\right)\right.
$$

Let

$$
\breve{x}:=\underset{x \in \mathbb{R}}{\operatorname{argmin}} f(x) \quad \text { and } \quad \breve{x}^{ \pm}:=\underset{x \in \mathbb{R}}{\operatorname{argmin}} f^{ \pm}(x) .
$$

Since $\|\mathbf{a}\|_{2}=1$, then

$$
f^{ \pm}(x)=\frac{1}{2} x^{2}-\left(\mathbf{a}^{\top} \mathbf{b}-(\pm \lambda)\right) x+\frac{1}{2}\|\mathbf{b}\|_{2}^{2}
$$

and hence

$$
\begin{equation*}
\breve{x}^{ \pm}=\mathbf{a}^{\top} \mathbf{b}-(\pm \lambda) \tag{10}
\end{equation*}
$$

Note that $\breve{x}^{-} \geq \breve{x}^{+}$.
Proposition 3.1:

$$
\breve{x}=\left\{\begin{array}{cc}
\breve{x}^{+}, & \breve{x}^{+}>0 \tag{11}\\
\breve{x}^{-}, & \breve{x}^{-}<0 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Proof: If $\breve{x}^{+}>0$, then $f\left(\breve{x}^{+}\right)=f^{+}\left(\breve{x}^{+}\right) \leq f^{+}(\alpha) \leq$ $f(\alpha)$ for all $\alpha \in \mathbb{R}$, so $\breve{x}=\breve{x}^{+}$. Similarly, $\breve{x}=\breve{x}^{-}$when $\breve{x}^{-}<$ 0 . Since $\breve{x}^{-} \geq \breve{x}^{+}$, the remaining case is when $\breve{x}^{+} \leq 0 \leq \breve{x}^{-}$. By strict convexity, $f^{ \pm}(\alpha)$ is decreasing on $\left(-\infty, \breve{x}^{ \pm}\right]$and increasing on $\left[\breve{x}^{ \pm}, \infty\right)$. As $f(\alpha)=f^{-}(\alpha)$ on $(-\infty, 0]$ which is included in $\left(-\infty, \breve{x}^{-}\right]$, then $f(\alpha)$ is decreasing on $(-\infty, 0]$. Similarly, $f(\alpha)$ is increasing on $[0, \infty)$. So $\breve{x}=0$.

By injecting (10) into (11), we then retrieve the well-known function expression [15]

$$
\breve{x}=\operatorname{shrink}\left(\mathbf{a}^{\top} \mathbf{b}, \lambda\right)
$$

where

$$
\operatorname{shrink}(\beta, \lambda):=\left\{\begin{array}{cc}
\beta-\lambda, & \beta-\lambda>0 \\
\beta+\lambda, & \beta+\lambda<0 \\
0, & \text { otherwise }
\end{array}\right.
$$

B. Generic displacement function $\delta(x)$

It is clear that condition (a) is satisfied when $\delta(x)=\breve{x}-x$. It follows from (11) that

$$
\breve{x}-x=\left\{\begin{array}{cc}
\breve{x}^{+}-x, & \breve{x}^{+}>0 \tag{12}\\
\breve{x}^{-}-x, & \breve{x}^{-}<0 \\
-x, & \text { otherwise }
\end{array} .\right.
$$

Consider the more general displacement function

$$
\delta(x):=\left\{\begin{array}{cc}
\rho\left(\breve{x}^{+}-x\right), & x+\rho\left(\breve{x}^{+}-x\right)>0 \tag{13}\\
\rho\left(\breve{x}^{-}-x\right), & x+\rho\left(\breve{x}^{-}-x\right)<0 \\
-\hat{\rho}(x), & \text { otherwise }
\end{array}\right.
$$

where $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ are some real monotonically increasing functions. Note that $\delta(x)=\breve{x}-x$ when $\rho(x)=\hat{\rho}(x)=x$ for all $x \in \mathbb{R}$. Note also in the general case that there is no conflict
between the first two cases of (13) since $\rho(\cdot)$ is monotonically increasing and $\breve{x}^{-} \geq \breve{x}^{+}$. Our goal is to find a condition on $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ for condition (a) to be satisfied by $\delta(x)$. The following proposition will be determinant in this search.

Proposition 3.2: Let $g(x)$ be a quadratic function of curvature $c>0$, minimized at \check{x}. For any $x \in \mathbb{R}$,

$$
g(x+\mu(\check{x}-x))<g(x) \quad \Leftrightarrow \quad x \neq \check{x} \text { and } \mu \in(0,2)
$$

Proof: Explicitly, $g(x)=g(\check{x})+c(x-\check{x})^{2}$ for all $x \in \mathbb{R}$. So $g(x+\mu(\check{x}-x))=g(\check{x})+c(1-\mu)^{2}(x-\check{x})^{2}$. Then, assuming that $x \neq \check{x}, g(x+\mu(\check{x}-x))<g(x)$ is successively equivalent to $(1-\mu)^{2}<(1-0)^{2},|1-\mu|<1$ and finally to $\mu \in(0,2)$.

Theorem 3.3: Assume that $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ are monotonically increasing such that $\rho(0)=\hat{\rho}(0)=0, \rho(x) / x \in(0,2)$ and $\hat{\rho}(x) / x \in(0,1]$ for all $x \neq 0$. Then the function $\delta(x)$ defined by (13) satisfies condition (a).

Proof: This proof is complex due to the multiplicity of cases. In particular, the three cases of (11) and (13) do not match, except when $x=\breve{x}$. We start with this particular value of x and show that $\delta(\breve{x})=0$. In the first case of (11), we have $\breve{x}=\breve{x}^{+}>0$. Hence, $\rho\left(\breve{x}^{+}-x\right)+\breve{x}=\rho(0)+\breve{x}=\breve{x}>0$. This falls in the first case of (13) which implies that $\delta(\breve{x})=\rho(0)=$ 0 . In a similar manner, we obtain $\delta(\breve{x})=0$ in the second case of (11). In the third case of (11), we have $\breve{x}^{+} \leq 0 \leq \breve{x}^{-}$and $\breve{x}=0$. By assumption on $\rho(\cdot), \rho(x)$ and x have the same sign. So $\rho\left(\breve{x}^{+}\right) \leq 0 \leq \rho\left(\breve{x}^{-}\right)$. This falls in the third case of (13) for $x=\breve{x}$, since $\breve{x}=0$. Hence $\delta(\breve{x})=-\hat{\rho}(\breve{x})=0$. Therefore, (7) is trivially satisfied at $x=\breve{x}$.

We now consider $x \neq \breve{x}$. From the assumptions on $\rho(\cdot)$ and $\hat{\rho}(\cdot)$, we have for all $u \neq 0$,
$\exists \mu \in(0,2), \hat{\mu} \in(0,1], \quad \rho(u)=\mu u$ and $\hat{\rho}(u)=\hat{\mu} u$.
Note that μ and $\hat{\mu}$ depend on u. This is also true at $u=0$ where one can take $\mu=\hat{\mu}=1$ for example. Let us label the three cases of (13) 'case 1 ', 'case 2' and 'case 3', respectively. We are going to show that the following three properties,

$$
\begin{gather*}
x+\delta(x) \geq 0 \tag{15}\\
\exists \mu \in(0,2), \quad \delta(x)=\mu\left(\breve{x}^{+}-x\right), \tag{16}\\
x \neq \breve{x}^{+} \tag{17}
\end{gather*}
$$

are satisfied in case 1 and in case 3 with $x>0$.
Assume case 1 . We have $x+\rho\left(\breve{x}^{+}-x\right)>0$ and $\delta(x)=$ $\rho\left(\breve{x}^{+}-x\right)$. So (15) is straightforward and (16) results directly from (14). If $x=\breve{x}^{+}$, we obtain successively that $\rho\left(\breve{x}^{+}-x\right)=$ $0, \breve{x}^{+}=x>0, \breve{x}=\breve{x}^{+}$according to (11), and finally $x=\breve{x}$. So our assumption that $x \neq \breve{x}$ implies (17).

Assume now case 3 with $x>0$. From case 3, we have

$$
\begin{equation*}
x+\rho\left(\breve{x}^{+}-x\right) \leq 0 \leq x+\rho\left(\breve{x}^{-}-x\right) \text { and } \delta(x)=-\hat{\rho}(x) \tag{18}
\end{equation*}
$$

Condition (15) is true since $x+\delta(x)=x-\hat{\rho}(x)$ which has the same sign as x due to (14). Since $x>0,0<\hat{\rho}(x) \leq x \leq$
$-\rho\left(\breve{x}^{+}-x\right)=-\mu\left(\breve{x}^{+}-x\right)$ for some $\mu \in(0,2)$ according to (14). Then, there exists $\mu^{\prime} \in(0, \mu] \subset(0,2)$ such that $\hat{\rho}(x)=$ $-\mu^{\prime}\left(\breve{x}^{+}-x\right)$. This leads to (16). Since $x>0$, assuming that $x=\breve{x}^{+}$would imply that $\breve{x}=\breve{x}^{+}$according to (11), which contradicts the assumption that $x \neq \breve{x}$. This justifies (17).

It follows from (9) and (15) that

$$
\begin{equation*}
f(x+\delta(x))=f^{+}(x+\delta(x)) \quad \text { and } \quad f^{+}(x) \leq f(x) \tag{19}
\end{equation*}
$$

It results from Proposition 3.2 with $g=f^{+}$, (16) and (17) that

$$
\begin{equation*}
f^{+}(x+\delta(x))<f^{+}(x) \tag{20}
\end{equation*}
$$

We thus obtain the strict inequality of (7) by combining (19) and (20).

One obtains in case 2 and in case 3 with $x<0$ equations similar to (15)-(20), where the inequality is reversed in (15), and the superscript ${ }^{+}$is replaced by ${ }^{-}$in (16)-(20). This also leads to the strict inequality of (7). What remains is case 3 with $x=0$. From (18), we have $\rho\left(\breve{x}^{+}\right) \leq 0 \leq \rho\left(\breve{x}^{-}\right)$. According to (14), $\mu^{+} \breve{x}^{+} \leq 0 \leq \mu^{-} \breve{x}^{-}$for some $\mu^{ \pm}>0$. This implies that $\breve{x}=0$ according to (11), which contradicts the assumption that $x \neq \breve{x}$. So this case is not possible.

C. Binary relaxed displacement

To achieve condition (b), we need to force $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ to have values in B while satisfying the condition of Theorem 3.3. There are various ways to do so. As a simple solution, we propose to take for $\rho(\cdot)$ the odd function such that

$$
\begin{equation*}
\rho(u)=\max _{2^{k} \leq u} 2^{k} \tag{21}
\end{equation*}
$$

for all $u>0$, and set $\hat{\rho}(\cdot)=\rho(\cdot)$. By construction, $\rho(0)=0$ and for any $u \neq 0, \rho(u)=\operatorname{sign}(u) 2^{k}$ where k is the position of the most significant 1 in the binary expansion of $|u|$. When $u>0$, it is clear that $\rho(u) \leq u<2 \rho(u)$. So $u / \rho(u) \in[1,2)$, or equivalently, $\rho(u) / u \in\left(\frac{1}{2}, 1\right]$. This remains true for all $u \neq 0$ since $\rho(u)$ has the same sign as u.

IV. N-DIMENSIONAL CASE

We return to the minimization of the general function $F(\mathbf{x})$ of (2). Calling \mathbf{a}_{i} the i th column vector of A, we assume $\left\|\mathbf{a}_{i}\right\|_{2}=1$ for all $i \in I$.

A. Design of $\delta_{i}(\mathbf{x})$

Let $\mathbf{x}=\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{N}$ and $i \in I$ be given. We can write

$$
\begin{equation*}
\mathrm{Ax}-\mathbf{b}=\mathbf{a}_{i} x_{i}-\mathbf{b}_{i} \tag{22}
\end{equation*}
$$

where $\mathbf{b}_{i}:=\mathbf{b}-\sum_{j \in I \backslash\{i\}} \mathbf{a}_{j} x_{j}$. We can therefore express $F(\mathbf{x})$ from (2) as

$$
\begin{equation*}
F(\mathbf{x})=f_{i}\left(x_{i}\right)+c_{i} \tag{23}
\end{equation*}
$$

where for any $x \in \mathbb{R}$,

$$
f_{i}(x):=\frac{1}{2}\left\|\mathbf{a}_{i} x-\mathbf{b}_{i}\right\|_{2}^{2}+\lambda|x|
$$

and $c_{i}:=\lambda \sum_{j \in I \backslash\{i\}}\left|x_{j}\right|$. Although \mathbf{b}_{i} and c_{i} depend on \mathbf{x}, note that they do not depend on its i th component. Therefore,

$$
F\left(\mathbf{x}+\alpha \mathbf{e}_{i}\right)=f_{i}\left(x_{i}+\alpha\right)+c_{i}
$$

for any $\alpha \in \mathbb{R}$. By applying Theorem 3.3 to $f_{i}(x)$, we have

$$
\begin{equation*}
f_{i}\left(x_{i}+\alpha_{i}\right) \leq f_{i}\left(x_{i}\right) \tag{24}
\end{equation*}
$$

where

$$
\alpha_{i}:=\left\{\begin{array}{cc}
\rho\left(\breve{x}_{i}^{+}-x_{i}\right), & x_{i}+\rho\left(\breve{x}_{i}^{+}-x_{i}\right)>0 \tag{25}\\
\rho\left(\breve{x}_{i}^{-}-x_{i}\right), & x_{i}+\rho\left(\breve{x}_{i}^{-}-x_{i}\right)<0 \\
-\hat{\rho}\left(x_{i}\right), & \text { otherwise }
\end{array}\right.
$$

and

$$
\breve{x}_{i}^{ \pm}=\mathbf{a}_{i}^{\top} \mathbf{b}_{i}-(\pm \lambda)
$$

The inequality of (24) is moreover strict when $x_{i} \neq \breve{x}_{i}:=$ $\operatorname{argmin}_{x} f_{i}(x)$. It then follows from (23) that

$$
F\left(\mathbf{x}+\alpha_{i} \mathbf{e}_{i}\right) \leq F(\mathbf{x})
$$

with a strict inequality when $F\left(\mathbf{x}+\alpha \mathbf{e}_{i}\right)$ is not minimized at $\alpha=0$. Since $\mathbf{a}_{i}^{\top} \mathbf{a}_{i}=1$, we have

$$
\begin{equation*}
\breve{x}_{i}^{ \pm}-x_{i}=\mathbf{a}_{i}^{\top} \mathbf{b}_{i}-(\pm \lambda)-\mathbf{a}_{i}^{\top} \mathbf{a}_{i} x_{i}=r_{i}-(\pm \lambda) \tag{26}
\end{equation*}
$$

where $r_{i}:=\mathbf{a}_{i}^{\top}\left(\mathbf{b}_{i}-\mathbf{a}_{i} x_{i}\right)=\mathbf{a}_{i}^{\top}(\mathbf{b}-\mathrm{A} \mathbf{x})$ due to (22). Define

$$
\mathrm{G}:=\mathrm{A}^{\top} \mathrm{A} \quad \text { and } \quad \mathbf{c}:=\mathrm{A}^{\top} \mathbf{b}
$$

Then, r_{i} is the i th component of the vector

$$
\begin{equation*}
\mathbf{r}:=\mathrm{R} \mathbf{x} \quad \text { where } \quad \mathrm{Rx}:=\mathbf{c}-\mathrm{G} \mathbf{x} \tag{27}
\end{equation*}
$$

Define the function

$$
\begin{align*}
& \qquad d_{i}(\mathbf{x}, \mathbf{r}):=\left\{\begin{array}{rc}
\alpha^{+}, & x_{i}+\alpha^{+}>0 \\
\alpha^{-}, & x_{i}+\alpha^{-}<0 \\
-\hat{\rho}\left(x_{i}\right), & \text { otherwise }
\end{array}\right. \tag{28}\\
& \text { where } \quad \alpha^{ \pm}:=\rho\left(r_{i}-(\pm \lambda)\right) . \tag{29}
\end{align*}
$$

By injecting (26) into (25), we have $\alpha_{i}=d_{i}(\mathbf{x}, \mathbf{r})$ where $\mathbf{r}:=\mathrm{Rx}$. Condition (a) is then satisfied by the function

$$
\begin{equation*}
\delta_{i}(\mathbf{x}):=d_{i}(\mathbf{x}, \mathrm{Rx}) \tag{30}
\end{equation*}
$$

Condition (b) is met by specifically taking $\rho(\cdot)$ defined in Section III-C and $\hat{\rho}(\cdot)=\rho(\cdot)$.

B. Multiplication-free iteration

The function $\delta_{i}(\mathbf{x})$ does not directly satisfy condition (c) as $\alpha_{n}=\delta_{i_{n}}\left(\mathbf{x}^{(n)}\right)=d_{i_{n}}\left(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}\right)$ where

$$
\begin{equation*}
\mathbf{r}^{(n)}:=\mathrm{Rx}^{(n)} \tag{31}
\end{equation*}
$$

which involves matrix multiplications. However, as $\mathbf{x}^{(n)}$ satisfies the recursion (3), $\mathbf{r}^{(n)}$ yields a simple recursive relation. Indeed, after subtracting \mathbf{b} from the members of the relation $\mathrm{G} \mathbf{x}^{(n+1)}=\mathrm{G} \mathbf{x}^{(n)}+\alpha_{n} \mathbf{g}_{i_{n}}$ where

$$
\mathbf{g}_{i}:=\mathrm{Ge}_{i}=\mathrm{A}^{\top} \mathbf{a}_{i}
$$

(31) and (27) imply that $\mathbf{r}^{(n+1)}=\mathbf{r}^{(n)}-\alpha_{n} \mathbf{g}_{i_{n}}$. The iteration of (3) and (4) can then be equivalently implemented by the system

$$
\begin{align*}
\alpha_{n} & =d_{i_{n}}\left(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}\right) \tag{32a}\\
\mathbf{x}^{(n+1)} & =\mathbf{x}^{(n)}+\alpha_{n} \mathbf{e}_{i_{n}} \tag{32b}\\
\mathbf{r}^{(n+1)} & =\mathbf{r}^{(n)}-\alpha_{n} \mathbf{g}_{i_{n}} \tag{32c}
\end{align*}
$$

Starting with $\mathbf{x}^{(0)}=\mathbf{0}$, we have $\mathbf{r}^{(0)}=\mathbf{c}$. Every multiplication in this iteration is a binary scaling.

Fig. 1. Numerical results

C. Cyclic and greedy control

Until now, we have not specified the choice of control sequence $\left(i_{n}\right)_{n \geq 0}$. The most basic option is the cyclic control $i_{n}:=(n \bmod N)+1$. Better results are obtained with control sequences that are adaptive with the evolution of the current estimate $\mathbf{x}^{(n)}$. In the case of ideal coordinate descent, it was proposed in [1] to choose at each iteration n the index $i_{n} \in I$ that maximizes $\left\|\mathbf{x}^{(n+1)}-\mathbf{x}^{(n)}\right\|_{2}$. With our multiplication-free iteration, this control amounts to taking

$$
\begin{equation*}
i_{n}:=\underset{i \in I}{\operatorname{argmax}}\left|d_{i_{n}}\left(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}\right)\right| . \tag{33}
\end{equation*}
$$

This control which we will label as "greedy" in this paper does not involve any multiplication.

V. EXPERIMENTS

As in [1], we performed our numerical tests with a 256×512 matrix A whose entries are randomly and uniformly drawn in $[0,1]$ before the column vectors are normalized. In Figure 1, we plot the evolution of $F\left(\mathbf{x}^{(n)}\right)$ with respect to the iteration number n, where $\mathbf{x}^{(n)}$ results from the iteration of the system (32), for various choices of sequence $\left(i_{n}\right)_{n \geq 0}$ and functions $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ in the definition (28) of $d_{i}(\overline{\mathbf{x}}, \mathbf{r})$. The cyclic control $i_{n}:=(n \bmod N)+1$ is used in (i) and (ii), while the greedy control of (33) is used in (iii) and (iv). The functions $\rho(x)=\hat{\rho}(x)=x$ are used in (i) and (ii). They reproduce the ideal CD minimization of [1]. Meanwhile, the binary valued functions $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ defined in Section III-C are used in (iii) and (iv). In this case, all multiplications are reduced to binary scalings. In spite of this outstanding complexity reduction, the consequent degradation in the minimization of $F(\mathbf{x})$ appears to be quite limited (compare (ii) and (iv) with (i) and (iii), respectively).

VI. Block coordinate descent

A block version of (32) can be achieved by iterating the more general system

$$
\begin{align*}
\boldsymbol{\alpha}_{n} & =\mathrm{D}_{n}\left(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}\right) \tag{34a}\\
\mathbf{x}^{(n+1)} & =\mathbf{x}^{(n)}+\boldsymbol{\alpha}_{n} \tag{34b}\\
\mathbf{r}^{(n+1)} & =\mathbf{r}^{(n)}-\mathrm{G} \boldsymbol{\alpha}_{n} \tag{34c}
\end{align*}
$$

where

$$
\mathrm{D}_{n}(\mathbf{x}, \mathbf{r}):=\sum_{i \in I} w_{i}^{(n)} d_{i}(\mathbf{x}, \mathbf{r}) \mathbf{e}_{i}
$$

for some non-negative coefficients $w_{i}^{(n)}$. As (34c) still results from (31), it follows from (30) that

$$
\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}+\sum_{i \in I} w_{i}^{(n)} \delta_{i}\left(\mathbf{x}^{(n)}\right) \mathbf{e}_{i}
$$

By having $\sum_{i \in I} w_{i}^{(n)}=1$ for each $n \geq 0$, one easily shows that $F\left(\mathbf{x}^{(n+1)}\right) \leq F\left(\mathbf{x}^{(n)}\right)$ given that F is convex and (5) is satisfied for all $i \in I$. The system (34) is then made free of multiplication by adding the constraint that $w_{i}^{(n)}$ is a power of 2 for every i and n.

REFERENCES

[1] Y. Li and S. Osher, "Coordinate descent optimization for ℓ^{1} minimization with application to compressed sensing; a greedy algorithm," Inverse Problems and Imaging, vol. 3, no. 3, pp. 487-503, 2009.
[2] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, "A survey of sparse representation: algorithms and applications," IEEE access, vol. 3, pp. 490530, 2015.
[3] S. Mallat and Z. Zhang, "Matching pursuit with time-frequency dictionaries," tech. rep., Courant Institute of Mathematical Sciences New York United States, 1993.
[4] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 1094-1121, 2012.
[5] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183-202, 2009.
[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends $®$ in Machine learning, vol. 3, no. 1, pp. 1-122, 2011.
[7] S. J. Wright, "Coordinate descent algorithms," Mathematical Programming, vol. 151, no. 1, pp. 3-34, 2015.
[8] P. Richtárik and M. Takáč, "Parallel coordinate descent methods for big data optimization," Mathematical Programming, vol. 156, no. 1-2, pp. 433-484, 2016.
[9] R. Tappenden, P. Richtárik, and J. Gondzio, "Inexact coordinate descent: complexity and preconditioning," Journal of Optimization Theory and Applications, vol. 170, no. 1, pp. 144-176, 2016.
[10] F. Ren, R. Dorrace, W. Xu, and D. Marković, "A single-precision compressive sensing signal reconstruction engine on FPGAs," in Field Programmable Logic and Applications (FPL), 2013 23rd International Conference on, pp. 1-4, IEEE, 2013.
[11] H. D. R. Aniles, "FPGA-based compressed sensing reconstruction of sparse signals," Master's thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica, 2014.
[12] Y. Quan, Y. Li, X. Gao, and M. Xing, "FPGA implementation of realtime compressive sensing with partial fourier dictionary," International Journal of Antennas and Propagation, vol. 2016, 2016.
[13] T. Remez, O. Litany, S. Yoseff, H. Haim, and A. Bronstein, "FPGA system for real-time computational extended depth of field imaging using phase aperture coding," arXiv preprint arXiv:1608.01074, 2016.
[14] S. Kim, U. Yun, J. Jang, G. Seo, J. Kang, H.-N. Lee, and M. Lee, "Reduced computational complexity orthogonal matching pursuit using a novel partitioned inversion technique for compressive sensing," Electronics, vol. 7, no. 9, p. 206, 2018.
[15] W. J. Fu, "Penalized regressions: the bridge versus the lasso," J. Comput. Graph. Statist., vol. 7, no. 3, pp. 397-416, 1998.

[^0]: D. Rzepka was supported by the Polish National Center of Science under Grant DEC-2017/27/B/ST7/03082.

