Multiplication-free coordinate descent iteration for ℓ_1 -regularized least squares

Nguyen T. Thao*, Dominik Rzepka[†]

*Dept. of EE, City College of New York, CUNY, New York, USA, tnguyen@ccny.cuny.edu

[†] Dept. of Measurement and Electronics, AGH Univ. of Science and Tech., Kraków, Poland, drzepka@agh.edu.pl

Abstract—We propose a coordinate descent iteration for ℓ_1 -regularized least-squares optimization that is free of multiplications. Although a suboptimal version of the ideal coordinate descent algorithm of Li and Osher [1], it contributes to major computational savings for only slight convergence degradations.

Index Terms—least squares, ℓ_1 -regularization, basis pursuit denoising, lasso, coordinate descent, relaxation, binary scaling, bit shift, compressed sensing, sparse recovery.

I. INTRODUCTION

Sparse representation has become a fundamental tool for modern machine learning and signal processing [2]. Finding sparse approximate solutions of $A\mathbf{x} = \mathbf{b}$ (where A is an $M \times N$ matrix) can be performed by minimizing

$$F_{\ell_0}(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_0.$$
(1)

While finding a minimizer of $F_{\ell_0}(\mathbf{x})$ is an NP-complete problem, it is possible to obtain efficiently a good approximation of it. Two main approaches for this are greedy methods (related to matching pursuit [3], [4]) and relaxation methods (e.g. [5], [6], see also survey [2]). The latter rely on an ℓ_1 -penalized least squares optimization by minimizing

$$F(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$
 (2)

Greedy methods are fast, but not accurate in finding the correct support of x. With ℓ_1 -regularized methods, finding the correct support is guaranteed as long as the matrix A obeys certain conditions, but they tend to be slower. In [1], Li and Osher proposed a relaxation-based coordinate descent (CD) approach to this optimization, where at each iteration, $F(\mathbf{x})$ is minimized along one of the coordinate dimensions of x. CD methods are appealing for their low complexity per iteration. Recently proposed improvements of CD methods are parallelization [7], [8] and inexact iterations [9].

Assuming that the column vectors of A are normalized, we push further the complexity reduction of the CD ℓ_1 regularization by limiting all multiplications to mere binary scalings. This is made possible by not aiming at an ideal minimization of $F(\mathbf{x})$ along any given coordinate dimension, but instead by identifying coordinate displacements that are powers of 2 while still guaranteeing a decrease of $F(\mathbf{x})$. Numerical experiments show that the rate of convergence of our multiplication-free iteration is only slightly degraded

D. Rzepka was supported by the Polish National Center of Science under Grant DEC-2017/27/B/ST7/03082.

compared to the ideal CD minimization. Meanwhile, the absence of multiplications allows for substantial computational savings in hardware (FPGA, ASIC etc.) implementations of sparse recovery methods [10], [11], [12], [13], [14].

II. STRATEGY OF COORDINATE DESCENT

The goal is to approach a minimizer of $F(\mathbf{x})$ with an algorithm of the type

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \alpha_n \,\mathbf{e}_{i_n} \tag{3}$$

where \mathbf{e}_i denotes the *i*th coordinate vector of \mathbb{R}^N , $(i_n)_{n\geq 0}$ is some sequence of $I := \{1, \dots, N\}$ and $(\alpha_n)_{n\geq 0}$ is some sequence in the set

$$B := \{ \pm 2^k : k \in \mathbb{Z} \} \cup \{0\}$$

Our strategy is to take

$$\alpha_n = \delta_{i_n}(\mathbf{x}^{(n)}) \tag{4}$$

where for each $i \in I$, $\delta_i(\mathbf{x})$ is a real function of \mathbb{R}^N satisfying the following conditions:

(a) for all $\mathbf{x} \in \mathbb{R}^N$,

$$F(\mathbf{x} + \delta_i(\mathbf{x}) \mathbf{e}_i) \le F(\mathbf{x}) \tag{5}$$

with a strict inequality when $F(\mathbf{x} + \alpha \mathbf{e}_i)$ is not the minimized at $\alpha = 0$,

- (b) for all $\mathbf{x} \in \mathbb{R}^N$, $\delta_i(\mathbf{x}) \in B$,
- (c) the computation of $\alpha_n = \delta_{i_n}(\mathbf{x}^{(n)})$ in the iteration (3) can be implemented without any multiplication or division but only with binary scalings (besides additions and elementary binary operations).

III. ONE-DIMENSIONAL CASE

We start with the simple case N = 1. The function $F(\mathbf{x})$ is reduced to

$$f(x) := \frac{1}{2} \|\mathbf{a} x - \mathbf{b}\|_{2}^{2} + \lambda |x|$$
(6)

where $\mathbf{a}, \mathbf{b} \in \mathbb{R}^M$ with $\|\mathbf{a}\|_2 = 1$, $\lambda \ge 0$ and $x \in \mathbb{R}$. Our goal is to find a real function $\delta(x)$ satisfying conditions (a) and (b), which here have the simpler form,

(a) for all $x \in \mathbb{R}$,

$$f(x + \delta(x)) \le f(x) \tag{7}$$

with a strict inequality when $f(x + \alpha)$ is not minimized at $\alpha = 0$.

(b) for all $x \in \mathbb{R}$, $\delta(x) \in B$.

A. Revisiting the shrinkage function

Let $f^+(x)$ and $f^-(x)$ be the two quadratic functions defined by

$$f^{\pm}(x) = \frac{1}{2} \|\mathbf{a} x - \mathbf{b}\|_{2}^{2} \pm \lambda x.$$
 (8)

Then,

$$f(x) = \begin{cases} f^+(x), & x \ge 0\\ f^-(x), & x \le 0 \end{cases} = \max\left(f^-(x), f^+(x)\right). \tag{9}$$

Let

$$\breve{x} := \underset{x \in \mathbb{R}}{\operatorname{argmin}} f(x) \quad \text{and} \quad \breve{x}^{\pm} := \underset{x \in \mathbb{R}}{\operatorname{argmin}} f^{\pm}(x).$$

Since $\|\mathbf{a}\|_2 = 1$, then

$$f^{\pm}(x) = \frac{1}{2}x^2 - (\mathbf{a}^{\top}\mathbf{b} - (\pm\lambda))x + \frac{1}{2}\|\mathbf{b}\|_2^2,$$

and hence

$$\breve{x}^{\pm} = \mathbf{a}^{\mathsf{T}}\mathbf{b} - (\pm\lambda). \tag{10}$$

Note that $\breve{x}^- \geq \breve{x}^+$.

Proposition 3.1:

$$\breve{x} = \begin{cases}
\breve{x}^{+}, & \breve{x}^{+} > 0 \\
\breve{x}^{-}, & \breve{x}^{-} < 0 \\
0, & \text{otherwise}
\end{cases}$$
(11)

Proof: If $\breve{x}^+ > 0$, then $f(\breve{x}^+) = f^+(\breve{x}^+) \le f^+(\alpha) \le f(\alpha)$ for all $\alpha \in \mathbb{R}$, so $\breve{x} = \breve{x}^+$. Similarly, $\breve{x} = \breve{x}^-$ when $\breve{x}^- < 0$. Since $\breve{x}^- \ge \breve{x}^+$, the remaining case is when $\breve{x}^+ \le 0 \le \breve{x}^-$. By strict convexity, $f^{\pm}(\alpha)$ is decreasing on $(-\infty, \breve{x}^{\pm}]$ and increasing on $[\breve{x}^{\pm}, \infty)$. As $f(\alpha) = f^-(\alpha)$ on $(-\infty, 0]$ which is included in $(-\infty, \breve{x}^-]$, then $f(\alpha)$ is decreasing on $(-\infty, 0]$. Similarly, $f(\alpha)$ is increasing on $[0, \infty)$. So $\breve{x} = 0$.

By injecting (10) into (11), we then retrieve the well-known function expression [15]

$$\breve{x} = \operatorname{shrink}(\mathbf{a}^{\mathsf{T}}\mathbf{b},\lambda)$$

where

$$\operatorname{shrink}(eta, \lambda) := \left\{ egin{array}{cc} eta - \lambda, & eta - \lambda > 0 \\ eta + \lambda, & eta + \lambda < 0 \\ 0, & \operatorname{otherwise} \end{array}
ight.$$

B. Generic displacement function $\delta(x)$

It is clear that condition (a) is satisfied when $\delta(x) = \breve{x} - x$. It follows from (11) that

$$\ddot{x} - x = \begin{cases} \ddot{x}^+ - x, & \breve{x}^+ > 0 \\ \breve{x}^- - x, & \breve{x}^- < 0 \\ -x, & \text{otherwise} \end{cases}$$
(12)

Consider the more general displacement function

$$\delta(x) := \begin{cases} \rho(\breve{x}^{+}-x), & x + \rho(\breve{x}^{+}-x) > 0\\ \rho(\breve{x}^{-}-x), & x + \rho(\breve{x}^{-}-x) < 0\\ -\hat{\rho}(x), & \text{otherwise} \end{cases}$$
(13)

where $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ are some real monotonically increasing functions. Note that $\delta(x) = \breve{x} - x$ when $\rho(x) = \hat{\rho}(x) = x$ for all $x \in \mathbb{R}$. Note also in the general case that there is no conflict

between the first two cases of (13) since $\rho(\cdot)$ is monotonically increasing and $\breve{x}^- \geq \breve{x}^+$. Our goal is to find a condition on $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ for condition (a) to be satisfied by $\delta(x)$. The following proposition will be determinant in this search.

Proposition 3.2: Let g(x) be a quadratic function of curvature c > 0, minimized at \check{x} . For any $x \in \mathbb{R}$,

$$g(x + \mu(\check{x} - x)) < g(x) \quad \Leftrightarrow \quad x \neq \check{x} \text{ and } \mu \in (0, 2).$$

Proof: Explicitly, $g(x) = g(\check{x}) + c(x-\check{x})^2$ for all $x \in \mathbb{R}$. So $g(x+\mu(\check{x}-x)) = g(\check{x})+c(1-\mu)^2(x-\check{x})^2$. Then, assuming that $x \neq \check{x}$, $g(x+\mu(\check{x}-x)) < g(x)$ is successively equivalent to $(1-\mu)^2 < (1-0)^2$, $|1-\mu| < 1$ and finally to $\mu \in (0,2)$.

Theorem 3.3: Assume that $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ are monotonically increasing such that $\rho(0) = \hat{\rho}(0) = 0$, $\rho(x)/x \in (0,2)$ and $\hat{\rho}(x)/x \in (0,1]$ for all $x \neq 0$. Then the function $\delta(x)$ defined by (13) satisfies condition (a).

Proof: This proof is complex due to the multiplicity of cases. In particular, the three cases of (11) and (13) do not match, except when $x = \check{x}$. We start with this particular value of x and show that $\delta(\check{x}) = 0$. In the first case of (11), we have $\check{x} = \check{x}^+ > 0$. Hence, $\rho(\check{x}^+ - x) + \check{x} = \rho(0) + \check{x} = \check{x} > 0$. This falls in the first case of (13) which implies that $\delta(\check{x}) = \rho(0) = 0$. In a similar manner, we obtain $\delta(\check{x}) = 0$ in the second case of (11). In the third case of (11), we have $\check{x}^+ \leq 0 \leq \check{x}^-$ and $\check{x} = 0$. By assumption on $\rho(\cdot)$, $\rho(x)$ and x have the same sign. So $\rho(\check{x}^+) \leq 0 \leq \rho(\check{x}^-)$. This falls in the third case of (13) for $x = \check{x}$, since $\check{x} = 0$. Hence $\delta(\check{x}) = -\hat{\rho}(\check{x}) = 0$. Therefore, (7) is trivially satisfied at $x = \check{x}$.

We now consider $x \neq \check{x}$. From the assumptions on $\rho(\cdot)$ and $\hat{\rho}(\cdot)$, we have for all $u \neq 0$,

$$\exists \mu \in (0,2), \hat{\mu} \in (0,1], \quad \rho(u) = \mu u \text{ and } \hat{\rho}(u) = \hat{\mu} u.$$
 (14)

Note that μ and $\hat{\mu}$ depend on u. This is also true at u = 0 where one can take $\mu = \hat{\mu} = 1$ for example. Let us label the three cases of (13) 'case 1', 'case 2' and 'case 3', respectively. We are going to show that the following three properties,

$$x + \delta(x) \ge 0,\tag{15}$$

$$\exists \mu \in (0,2), \quad \delta(x) = \mu \, (\breve{x}^+ - x),$$
 (16)

$$x \neq \breve{x}^+,\tag{17}$$

are satisfied in case 1 and in case 3 with x > 0.

Assume case 1. We have $x + \rho(\breve{x}^+ - x) > 0$ and $\delta(x) = \rho(\breve{x}^+ - x)$. So (15) is straightforward and (16) results directly from (14). If $x = \breve{x}^+$, we obtain successively that $\rho(\breve{x}^+ - x) = 0$, $\breve{x}^+ = x > 0$, $\breve{x} = \breve{x}^+$ according to (11), and finally $x = \breve{x}$. So our assumption that $x \neq \breve{x}$ implies (17).

Assume now case 3 with x > 0. From case 3, we have

$$x + \rho(\breve{x}^+ - x) \le 0 \le x + \rho(\breve{x}^- - x)$$
 and $\delta(x) = -\hat{\rho}(x)$. (18)
Condition (15) is true since $x + \delta(x) = x - \hat{\rho}(x)$ which has

Condition (15) is true since $x + \delta(x) = x - \rho(x)$ which has the same sign as x due to (14). Since x > 0, $0 < \hat{\rho}(x) \le x \le$ $-\rho(\breve{x}^+-x) = -\mu(\breve{x}^+-x)$ for some $\mu \in (0,2)$ according to (14). Then, there exists $\mu' \in (0,\mu] \subset (0,2)$ such that $\hat{\rho}(x) = -\mu'(\breve{x}^+-x)$. This leads to (16). Since x > 0, assuming that $x = \breve{x}^+$ would imply that $\breve{x} = \breve{x}^+$ according to (11), which contradicts the assumption that $x \neq \breve{x}$. This justifies (17).

It follows from (9) and (15) that

$$f(x + \delta(x)) = f^+(x + \delta(x))$$
 and $f^+(x) \le f(x)$. (19)

It results from Proposition 3.2 with $g = f^+$, (16) and (17) that

$$f^+(x+\delta(x)) < f^+(x).$$
 (20)

We thus obtain the strict inequality of (7) by combining (19) and (20).

One obtains in case 2 and in case 3 with x < 0 equations similar to (15)-(20), where the inequality is reversed in (15), and the superscript + is replaced by - in (16)-(20). This also leads to the strict inequality of (7). What remains is case 3 with x = 0. From (18), we have $\rho(\breve{x}^+) \le 0 \le \rho(\breve{x}^-)$. According to (14), $\mu^+\breve{x}^+ \le 0 \le \mu^-\breve{x}^-$ for some $\mu^{\pm} > 0$. This implies that $\breve{x} = 0$ according to (11), which contradicts the assumption that $x \ne \breve{x}$. So this case is not possible.

C. Binary relaxed displacement

To achieve condition (b), we need to force $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ to have values in *B* while satisfying the condition of Theorem 3.3. There are various ways to do so. As a simple solution, we propose to take for $\rho(\cdot)$ the odd function such that

$$\rho(u) = \max_{2^k \le u} 2^k \tag{21}$$

for all u > 0, and set $\hat{\rho}(\cdot) = \rho(\cdot)$. By construction, $\rho(0) = 0$ and for any $u \neq 0$, $\rho(u) = \operatorname{sign}(u) 2^k$ where k is the position of the most significant 1 in the binary expansion of |u|. When u > 0, it is clear that $\rho(u) \le u < 2\rho(u)$. So $u/\rho(u) \in [1, 2)$, or equivalently, $\rho(u)/u \in (\frac{1}{2}, 1]$. This remains true for all $u \neq 0$ since $\rho(u)$ has the same sign as u.

IV. N-DIMENSIONAL CASE

We return to the minimization of the general function $F(\mathbf{x})$ of (2). Calling \mathbf{a}_i the *i*th column vector of A, we assume $\|\mathbf{a}_i\|_2 = 1$ for all $i \in I$.

A. Design of
$$\delta_i(\mathbf{x})$$

Let $\mathbf{x} = (x_1, \cdots, x_N) \in \mathbb{R}^N$ and $i \in I$ be given. We can write

$$\mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{a}_i \, x_i - \mathbf{b}_i \tag{22}$$

where $\mathbf{b}_i := \mathbf{b} - \sum_{j \in I \setminus \{i\}} \mathbf{a}_j x_j$. We can therefore express $F(\mathbf{x})$ from (2) as

$$F(\mathbf{x}) = f_i(x_i) + c_i \tag{23}$$

where for any $x \in \mathbb{R}$,

$$f_i(x) := \frac{1}{2} \|\mathbf{a}_i x - \mathbf{b}_i\|_2^2 + \lambda |x|$$

and $c_i := \lambda \sum_{j \in I \setminus \{i\}} |x_j|$. Although \mathbf{b}_i and c_i depend on \mathbf{x} , note that they do not depend on its *i*th component. Therefore,

$$F(\mathbf{x} + \alpha \mathbf{e}_i) = f_i(x_i + \alpha) + c_i$$

for any $\alpha \in \mathbb{R}$. By applying Theorem 3.3 to $f_i(x)$, we have

$$f_i(x_i + \alpha_i) \le f_i(x_i) \tag{24}$$

where

$$\alpha_{i} := \begin{cases} \rho(\breve{x}_{i}^{+} - x_{i}), & x_{i} + \rho(\breve{x}_{i}^{+} - x_{i}) > 0\\ \rho(\breve{x}_{i}^{-} - x_{i}), & x_{i} + \rho(\breve{x}_{i}^{-} - x_{i}) < 0\\ -\hat{\rho}(x_{i}), & \text{otherwise} \end{cases}$$
(25)

and

$$\breve{x}_i^{\pm} = \mathbf{a}_i^{\top} \mathbf{b}_i - (\pm \lambda).$$

The inequality of (24) is moreover strict when $x_i \neq \breve{x}_i := \operatorname{argmin}_x f_i(x)$. It then follows from (23) that

$$F(\mathbf{x} + \alpha_i \mathbf{e}_i) \le F(\mathbf{x})$$

with a strict inequality when $F(\mathbf{x} + \alpha \mathbf{e}_i)$ is not minimized at $\alpha = 0$. Since $\mathbf{a}_i^{\top} \mathbf{a}_i = 1$, we have

$$\breve{x}_i^{\pm} - x_i = \mathbf{a}_i^{\top} \mathbf{b}_i - (\pm \lambda) - \mathbf{a}_i^{\top} \mathbf{a}_i \, x_i = r_i - (\pm \lambda)$$
(26)

where $r_i := \mathbf{a}_i^{\top}(\mathbf{b}_i - \mathbf{a}_i x_i) = \mathbf{a}_i^{\top}(\mathbf{b} - \mathbf{A}\mathbf{x})$ due to (22). Define G := $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{c} := \mathbf{A}^{\top}\mathbf{b}$.

Then, r_i is the *i*th component of the vector

$$\mathbf{r} := \mathbf{R}\mathbf{x}$$
 where $\mathbf{R}\mathbf{x} := \mathbf{c} - \mathbf{G}\mathbf{x}$. (27)

Define the function

$$d_i(\mathbf{x}, \mathbf{r}) := \begin{cases} \alpha^+, & x_i + \alpha^+ > 0\\ \alpha^-, & x_i + \alpha^- < 0\\ -\hat{\rho}(x_i), & \text{otherwise} \end{cases}$$
(28)

where

By injecting (26) into (25), we have $\alpha_i = d_i(\mathbf{x}, \mathbf{r})$ where $\mathbf{r} := \mathbf{R}\mathbf{x}$. Condition (a) is then satisfied by the function

 $\alpha^{\pm} := \rho(r_i - (\pm \lambda)).$

$$\delta_i(\mathbf{x}) := d_i(\mathbf{x}, \mathbf{R}\mathbf{x}). \tag{30}$$

(29)

Condition (b) is met by specifically taking $\rho(\cdot)$ defined in Section III-C and $\hat{\rho}(\cdot) = \rho(\cdot)$.

B. Multiplication-free iteration

The function $\delta_i(\mathbf{x})$ does not directly satisfy condition (c) as $\alpha_n = \delta_{i_n}(\mathbf{x}^{(n)}) = d_{i_n}(\mathbf{x}^{(n)}, \mathbf{r}^{(n)})$ where

$$\mathbf{r}^{(n)} := \mathbf{R}\mathbf{x}^{(n)},\tag{31}$$

which involves matrix multiplications. However, as $\mathbf{x}^{(n)}$ satisfies the recursion (3), $\mathbf{r}^{(n)}$ yields a simple recursive relation. Indeed, after subtracting **b** from the members of the relation $G\mathbf{x}^{(n+1)} = G\mathbf{x}^{(n)} + \alpha_n \mathbf{g}_{i_n}$ where

$$\mathbf{g}_i := \mathbf{G}\mathbf{e}_i = \mathbf{A}^{\mathsf{T}}\mathbf{a}_i,$$

(31) and (27) imply that $\mathbf{r}^{(n+1)} = \mathbf{r}^{(n)} - \alpha_n \mathbf{g}_{i_n}$. The iteration of (3) and (4) can then be equivalently implemented by the system

$$\alpha_n = d_{i_n}(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}) \tag{32a}$$

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \alpha_n \,\mathbf{e}_{i_n} \tag{32b}$$

$$\mathbf{r}^{(n+1)} = \mathbf{r}^{(n)} - \alpha_n \, \mathbf{g}_{i_n}. \tag{32c}$$

Starting with $\mathbf{x}^{(0)} = \mathbf{0}$, we have $\mathbf{r}^{(0)} = \mathbf{c}$. Every multiplication in this iteration is a binary scaling.

Fig. 1. Numerical results

C. Cyclic and greedy control

Until now, we have not specified the choice of control sequence $(i_n)_{n\geq 0}$. The most basic option is the cyclic control $i_n := (n \mod N) + 1$. Better results are obtained with control sequences that are adaptive with the evolution of the current estimate $\mathbf{x}^{(n)}$. In the case of ideal coordinate descent, it was proposed in [1] to choose at each iteration n the index $i_n \in I$ that maximizes $\|\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}\|_2$. With our multiplication-free iteration, this control amounts to taking

$$i_n := \operatorname*{argmax}_{i \in I} \left| d_{i_n}(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}) \right|.$$
(33)

This control which we will label as "greedy" in this paper does not involve any multiplication.

V. EXPERIMENTS

As in [1], we performed our numerical tests with a 256×512 matrix A whose entries are randomly and uniformly drawn in [0,1] before the column vectors are normalized. In Figure 1, we plot the evolution of $F(\mathbf{x}^{(n)})$ with respect to the iteration number n, where $\mathbf{x}^{(n)}$ results from the iteration of the system (32), for various choices of sequence $(i_n)_{n\geq 0}$ and functions $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ in the definition (28) of $d_i(\mathbf{x}, \mathbf{r})$. The cyclic control $i_n := (n \mod N) + 1$ is used in (i) and (ii), while the greedy control of (33) is used in (iii) and (iv). The functions $\rho(x) = \hat{\rho}(x) = x$ are used in (i) and (ii). They reproduce the ideal CD minimization of [1]. Meanwhile, the binary valued functions $\rho(\cdot)$ and $\hat{\rho}(\cdot)$ defined in Section III-C are used in (iii) and (iv). In this case, all multiplications are reduced to binary scalings. In spite of this outstanding complexity reduction, the consequent degradation in the minimization of $F(\mathbf{x})$ appears to be quite limited (compare (ii) and (iv) with (i) and (iii), respectively).

VI. BLOCK COORDINATE DESCENT

A block version of (32) can be achieved by iterating the more general system

$$\boldsymbol{\alpha}_n = \mathbf{D}_n(\mathbf{x}^{(n)}, \mathbf{r}^{(n)}) \tag{34a}$$

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \boldsymbol{\alpha}_n \tag{34b}$$

$$\mathbf{r}^{(n+1)} = \mathbf{r}^{(n)} - \mathbf{G} \,\boldsymbol{\alpha}_n \tag{34c}$$

where

$$D_n(\mathbf{x}, \mathbf{r}) := \sum_{i \in I} w_i^{(n)} d_i(\mathbf{x}, \mathbf{r}) \mathbf{e}_i$$

for some non-negative coefficients $w_i^{(n)}$. As (34c) still results from (31), it follows from (30) that

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \sum_{i \in I} w_i^{(n)} \,\delta_i(\mathbf{x}^{(n)}) \,\mathbf{e}_i.$$

By having $\sum_{i \in I} w_i^{(n)} = 1$ for each $n \ge 0$, one easily shows that $F(\mathbf{x}^{(n+1)}) \le F(\mathbf{x}^{(n)})$ given that F is convex and (5) is satisfied for all $i \in I$. The system (34) is then made free of multiplication by adding the constraint that $w_i^{(n)}$ is a power of 2 for every i and n.

REFERENCES

- Y. Li and S. Osher, "Coordinate descent optimization for l¹ minimization with application to compressed sensing; a greedy algorithm," *Inverse Problems and Imaging*, vol. 3, no. 3, pp. 487–503, 2009.
- [2] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, "A survey of sparse representation: algorithms and applications," *IEEE access*, vol. 3, pp. 490– 530, 2015.
- [3] S. Mallat and Z. Zhang, "Matching pursuit with time-frequency dictionaries," tech. rep., Courant Institute of Mathematical Sciences New York United States, 1993.
- [4] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," *IEEE Transactions on Information Theory*, vol. 58, no. 2, pp. 1094–1121, 2012.
- [5] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," *SIAM journal on imaging sciences*, vol. 2, no. 1, pp. 183–202, 2009.
- [6] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
- [7] S. J. Wright, "Coordinate descent algorithms," *Mathematical Program*ming, vol. 151, no. 1, pp. 3–34, 2015.
- [8] P. Richtárik and M. Takáč, "Parallel coordinate descent methods for big data optimization," *Mathematical Programming*, vol. 156, no. 1-2, pp. 433–484, 2016.
- [9] R. Tappenden, P. Richtárik, and J. Gondzio, "Inexact coordinate descent: complexity and preconditioning," *Journal of Optimization Theory and Applications*, vol. 170, no. 1, pp. 144–176, 2016.
- [10] F. Ren, R. Dorrace, W. Xu, and D. Marković, "A single-precision compressive sensing signal reconstruction engine on FPGAs," in *Field Programmable Logic and Applications (FPL), 2013 23rd International Conference on*, pp. 1–4, IEEE, 2013.
- [11] H. D. R. Aniles, "FPGA-based compressed sensing reconstruction of sparse signals," Master's thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica, 2014.
- [12] Y. Quan, Y. Li, X. Gao, and M. Xing, "FPGA implementation of realtime compressive sensing with partial fourier dictionary," *International Journal of Antennas and Propagation*, vol. 2016, 2016.
- [13] T. Remez, O. Litany, S. Yoseff, H. Haim, and A. Bronstein, "FPGA system for real-time computational extended depth of field imaging using phase aperture coding," arXiv preprint arXiv:1608.01074, 2016.
- [14] S. Kim, U. Yun, J. Jang, G. Seo, J. Kang, H.-N. Lee, and M. Lee, "Reduced computational complexity orthogonal matching pursuit using a novel partitioned inversion technique for compressive sensing," *Electronics*, vol. 7, no. 9, p. 206, 2018.
- [15] W. J. Fu, "Penalized regressions: the bridge versus the lasso," J. Comput. Graph. Statist., vol. 7, no. 3, pp. 397–416, 1998.