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Abstract—We study an iterative discretization algorithm
for solving optimization problems regularized by the total
variation norm over the space M(Ω) of Radon measures on
a bounded subset Ω of Rd. Our main motivation to study
this problem is the recovery of sparse atomic measures from
linear measurements. Under reasonable regularity conditions,
we arrive at a linear convergence rate guarantee.

I. SUPERRESOLUTION AND SEMI-INFINITE
PROGRAMMING

1 Imagine a signal consisting of a few localized peaks at
points xi ∈ Ω ⊆ Rd, and an inaccurate, linear measurement
of it. One may imagine a point light source viewed through
a lens with finite aperture. An idealized model of this
measurement process is to view the signal as a sparse
atomic measure µ0 =

∑s
i=1 ciδxi

∈ M(Ω), and the
measurement as a linear operator A : M(Ω) → Rm of
the form

Aµ =

(∫
Ω

ajdµ

)m
j=1

.

A few years ago, several independent teams of re-
searchers [4], [6], [21] realized that for this signal recovery
task, the canonical extension of basis pursuit, the total
variation minimization2

min
µ∈M(Ω)
Aµ=b

‖µ‖M (1)

enjoys similar properties to its discrete counterpart. For
many measurement operators [18], it can be proven that
the solution (1) for b = Aµ0 for a µ0 =

∑s
i=1 ciδxi

is equal to µ0, provided the sources (xi)
s
i=1 are well-

separated. One can also consider other data fidelity terms
f : Rm → R ∪ {∞}, leading to a problems of the form

min
µ∈M(Ω)

‖µ‖M + f(Aµ). (P)

1This proceeding is work in progress, and the results should seen as
preliminary. More details will be contained in the manuscripts [13], [14],
which we aim to submit in near future.

2Total variation will in this work consequently be used in the
sense of measures, i.e. ‖µ‖M = sup f∈C(Ω)

‖f‖∞≤1

∫
Ω fdµ (and not

in the sense of functions of bounded variation, i.e. ‖u‖TV =
supφ∈C1(Ω)
‖φ‖∞≤1

∫
Ω udivφdx).

Generically, (P) will have at least one solution which is a
sparse atomic measure [1], [12], [22].

The numerical resolution of (P) is not trivial. Notably,
the space over which we optimize is not only infinite-
dimensional, but also non-separable. Provided f is convex,
one possible strategy for solving (1) is to investigate the
dual of (P)

sup
q∈Rm

‖A∗q‖∞≤1

−f∗(q). (D)

This problem, although the variable over which we opti-
mize is no longer infinite-dimensional, is also not easy to
solve. The reason is that the constraint is still of infinite-
dimensional nature. In a few special cases, including the
important one of measurement functions of (trigonometri-
cally) polynomial nature [7], [17], the constraint can be
rewritten into a finite-dimensional one. In general however,
it seems that one needs to resort to discrete approximations.

The simplest way of discretizing (P) (or (D)) is to simply
restrict it to measures supported on a fixed finite grid Ωk
(or to only control a few of the infinitely many constraints
|(A∗q)(x)| ≤ 1, respectively):

min
µ∈M(Ωk)

‖µ‖M + f(Aµ) (Pk)

sup
q∈Rm

supx∈Ωk
|(A∗q)(x)|≤1

−f∗(q). (Dk)

If the sources (xi)
s
i=1 are guaranteed to lay on the grid,

this will of course succeed. However, as is well known, the
approach suffers from severe problems if they are not. One
speaks of basis mismatch [5]. In order to get an accurate
approximation, one needs to use a very fine grid, which
leads to both computationally heavy and ill-conditioned
problems. Knowing that the solution should have a sparse
support, it is tempting to try to instead iteratively refine the
grid, hoping to obtain a grid which is fine close to the final
support and else course. Abstractly, such a scheme would
have the following form:

Generic Iterative Discretization
1) Find a primal-dual solution pair (µk, qk) of (Pk)-(Dk).
2) According to some refinement rule R, calculate

Ωk+1 = R(Ωk, µk, qk)



3) Repeat until convergence.
These schemes have been known and applied for a long
time on the field of semi-infinite programming [19], [16],
[20]. Approaches like this are used heuristically in the
signal processing community, but their theoretical proper-
ties seem to have been overlooked to a great extent. An
exception is the instance of the algorithm induced by the
refinement rule

R(Ωk, µk, qk) = Ωk ∪ {argmax |A∗qk|} .

Technically, it has previously been treated under the name
of conditional gradient or Frank-Wolfe algorithm [15],
e.g. in [3]. It has however been shown to be essentially
equivalent to the approach treated here [10]. A convergence
rate beyond the one known to hold generically for any
instance of the Frank-Wolfe algorithm is yet to be proven.
Here should also be mentioned the recent sliding Frank-
Wolfe algorithm, which consists of alternating between a
conjugate gradient and continuously changing the positions
and amplitudes of the δx-components [2], [8]. The latter are
known to converge in a finite, but as of now unbounded.

In this paper, we present and analyse a slightly different
refinement rule. We will in particular arrive, under a few
regularity assumptions, at a guarantee of linear convergence
guarantee, which we believe to be novel. We will also
briefly discuss how it could be implemented without having
to explicitly find the argmax of the non-convex function
|A∗qk|.

II. MAIN RESULTS

Our iterative discretization algorithm is determined by its
refinement rule. We assume for simplicity that Ω = [0, 1]d,
and that Ωk is given as vertices of a collection Ck of dyadic
cells of the form n`/2

J` +2−J` [0, 1]d for some J` ∈ N and
n` ∈

{
0, . . . , 2J − 1

}d
.

The refinement rule we aim to study is now as follows:
Refinement Rule

1) Given qk, determine the set M of cells ω ∈ Ck which
have a non-empty intersection with the set

Xk = {x |x local max of |A∗qk|, |A∗qk(x)| > 1.}

2) Subdivide each cell ω ∈ M into four dyadic subcells
of equal size.

3) Define Ωk+1 as the vertices of the new collection
Ck+1.

This rule leads to convergence in great generality.

Theorem II.1. Assume that f is convex and bounded be-
low, A is weak-∗-continuous and A restricted to measures
supported on Ω0 is surjective. Then, the sequence (µk, qk)

Fig. 1: A∗qk for the first four iterations.

of dual-primal solutions of (Pk) and (Dk) contain subse-
quences (µ′k, q

′
k) weak-∗-converging to a dual-primal pair

of solutions (µ∗, q∗) of (P) and (D). If any of the problems
(P), (D) have unique solutions, the whole corresponding
sequence converges.

Theorem (II.1) is satisfactory, since it guarantees global
convergence in very great generality. It however fails to
provide any information about the rate of convergence. In
particular, it could be that the refinement takes place uni-
formly over the whole domain Ω, leading the employment
of the exchange algorithm pointless.

Remark 1. The refinement rule only subdividing the
cell containing the argmax will also fulfill the generic
convergence Theorem II.1. However, for the rest of the
analysis, it is (for technical reasons) important that each
cell intersecting Xk is subdivided.

A. Refined Analysis for Smooth Data Fidelity Terms

In order to make a more detailed analysis, we make the
following regularity assumptions:

1) f is differentiable, with an L-Lipschitz gradient
2) The measurement functions aj are all C2.
3) (P) has a unique solution µ∗ =

∑s
i=1 α

∗
i δξi .

4) The associated dual solution q? obeys the following
regularity conditions: We assume that the only points
x for which |A∗q(x)| = 1 are the points in ξ, and that
the second derivative of |A∗q| is negative definite in
each point ξi .

In particular assumption (4) seems to hard to control in
advance. However, for the important special case of f(v) =
τ
2‖v − b‖22 for a b = Aµ0 for an atomic µ0 with well-
separated support, it can furthermore be proven to hold
true, at least for large values of τ (see [9], [18]).

To formulate our main result, let us introduce a termi-
nology: we say that the algorithm has entered a δ-regime if
in all future iterations, each point in Xk lies at a distance
at most δ from ξ.

Theorem II.2. There exists constants C, K > 0 with the
following property: There exists a finite number N with
the so that after iteration N , Xk contains at most s points.



Furthermore, algorithm enters a τ -regime after at most N+
kτ iterations, where

kτ = s
(
K log

( τ̄0
τ

)
+ 2ddlog

(
τ−1

)
e
)

Additionally, for k ≥ kτ + 1, we will have

(inf (Pk))− (inf (P)) ≤ Cτ

Remark 2. The value of N is given by the number of
iterations the algorithm needs before ‖qk − q?‖2 falls
below a certain threshold, and |µk|(Ui) 6= 0 for certain
neighborhoods Ui of ξi. This number is finite due to
the generic convergence result and the uniqueness of the
solutions q? and µ?, but its size is hard to determine a-
priori.

Overall, this theorem states after a finite initial number
of iterations that we need C log(τ−1) iterations to pinpoint
the location of the support ξ, and the optimal objective
function value, up to an error τ . In other words, we obtain
an asymptotically linear convergence rate.

The proof of Theorem II.2 is too complicated to present
here, and we refer to [13], [14] for details. Let us however
sketch its main steps.

Sketch of proof:. Let us make the simplifying assumption
that ξ only contains one point (ξ having more than one
point leads to additional subtleties), and start by collecting
a few (non-trivial) stability facts on (D):

1) If qk is the solution of (Dk), we have

sup
x∈Ω
|A∗qk(x)| ≤ 1 + ε⇒ ‖q − q∗‖2 ≤ K1

√
ε

where K1 is a constant dependent on f∗ and q∗.
Here, it is crucial that f has an L-Lipschitz smooth
gradient, since it causes f∗ to be strongly convex,
which in turn leads to a favorable geometry of the
set {q | f∗(q) ≤ f∗(q∗)}, in which qk is contained.

2) If we denote M̂k the set of cells ω with ω ∩Xk 6= ∅,
we have

sup
ω∈M̂k

diam(ω) ≤ K2ε⇒ ‖A∗qk‖∞ ≤ 1 + ε2.

3) Define dist(ξi,Ωk) = supξi∈ξ infx∈Ωk
‖x − ξi‖2. If

the algorithm is in a τ -regime, we have

dist(ξ,Ωk) ≤ K3ε⇒ ‖A∗qk‖∞ ≤ 1 + τε.

4) If qk is close to q∗, A∗qk must be close to A∗q∗. In
particular, the maxima of |A∗qk| exceeding 1 must be
close to points in which |A∗q∗| is equal to 1.

We may now argue as follows: Due to the generic conver-
gence result, we will eventually have ‖A∗qk‖∞ ≤ 1 + ε.
Choosing ε small enough, this will by (1) cause qk to be

close to q?. This in turn will by (4) imply that Xk is close
to ξ, and that |Xk| only contains s = 1 point. We will
hence enter a τ̂0-regime for a small enough, but fixed, size
τ̂0 in N iterations.

Being in a τ̂0-regime, ω ∩ Xk 6= ∅ will in forthcoming
iterations only be true for cells in a region close to ξ. Since
those cells are divided in each step, and that region only
contains a finite amount of dyadic cells of diameter larger
than K2ε, we will at some point have diam(ω) ≤ K2ε for
all cells in M̂k. Invoking (2), we may trigger (1) to imply
that qk is very close to q∗. (4) together with the fact that the
cell divided is small then guarantees that we add a point to
Ωk which makes dist(ξ,Ωk) smaller. We may then by (3)
(via (1) and (2)) secure that for any forthcoming iteration,
all points in Xk lie τ̂0/2-neighborhood of ξ. Hence, we
will enter a τ̂0/2-regime in finite time.

The remaining task is now to carefully repeat the last
argument, counting how many iterations of the algorithm
we need for each ’argumentation cycle’ to be completed.
One arrives at the first result.

The second result is proved by arguing that if the optimal
solution of (P) is µ∗ =

∑s
i=1 α

∗
i δξi , the measure µ̃k =∑s

i=1 α
∗
i δxk,i

for points xk,i ∈ Ωk close to ξi is feasible
for (Pk). Thus, inf (Pk) ≤ ‖µ̃k‖M + f(Aµ̃k) = ‖µ∗‖ +
f(Aµ̃k). By estimating f(Aµ̃k)−f(Aµ∗), we arrive at the
second result.

III. IMPLEMENTATION OF THE ALGORITHM

In order to test the empirical performance, we have
implemented our algorithm in MATLAB.

The refinement rule we have discussed requires to de-
termine all local maximizers of |A∗qk|, which in general
seems impossible. We have instead choosed to implement a
rule which in an iterative fashion searches for points where
∇|A∗qk| is small and |A∗qk| is large. If one stops this
procedure based on critera relating to the second derivative
of A, one can prove that this will refine all cells in M̂k,
while at the same time only refining additional cells which
are close to M̂k. This will lead to slightly more complex
problems (Pk), (Dk), but not affect the convergence rate in
the sense of Theorem (II.2). We refer to [14] for details,
as well as a discussion on other ways of implementing the
refinement rule.

Let us present the results of our experiments for a toy
example: bumped Gaussian measurements on Ω = [0, 1]2.
That is, we choose the measurement functions aj equal to

aj(x) = exp(−Γ‖x− xj‖22/2)φ(x),

where xi ∈ [0, 1]2 and φ is a smooth function equal to 1
on [.1, .9]2 and 0 on the boundary of Ω. The inclusion
of the latter is necessary to ensure that the operator A



Fig. 2: Evolution of |A∗qk| and Ωk, for (from top left to
bottom right) k = 1, 5, 10 and 15 along a run of iterative
discretization algorithm. Notice the concentration of grid
points near the vertices of the regular pentagon on the circle
of radius .5 around the origin (that is, the support of µ?)
for late iterations.

is weak-∗-continuous (weak-∗-continuity is equivalent to
the measurement functions vanishing on the boundary).
Excluding φ, which should not play a great role if we
choose the xi and the support of the ground truth µ∗ far
away from the boundary, there are theoretical results [18]
indicating that our regularity assumption should be true
when the support of µ? is well-separated.

We choose (xj)
m
j=1 equal to a uniform grid on

[−3/4, 3/4]2 with 62 points, Γ = 15, and generate a sparse
atomic ground truth µ? by choosing 5 points ξi equally
spaced on the circle centered at the origin with radius .5,
and assigning them random amplitudes in {−1, 1}. We start
our algorithm with a grid of width 2−4 and let it run for 6
iterations, solving

min
µ∈M(Ω)

‖µ‖TV +
τ

2
‖Aµ− b‖22.

with τ = 107 and b = Aµ0. The evolutions of the dual
certificates A∗qk and grids Ωk are displayed in Figure 2.
The experiments resonates well with the theory: In early
iterations, points are added to the grid which are not close
to ξ at all . After a while, although not imminent from the
figures, the grids do concentrate around ξ.
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