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Abstract—We study Gabor frames of the form{
e2πibm·g(· − ak)

}
m,k∈Z generated by n times differen-

tiable windows g that are non-zero on an open interval
of length L > 0 with translation parameter a = L/2
and modulation parameter b ∈ (0, 2/L). We first review
recent explicit constructions of all dual windows with
sufficiently short support by the authors. We then show
that the obtainable smoothness of dual windows depends
on the location of singularities of g. Our proof yields an
explicit construction procedure of smooth dual windows
once the singularities of g avoid the specified locations.

I. INTRODUCTION

Series expansion of signals in L2(R) based on Gabor
frames is a popular choice in time-frequency analysis.
A Gabor system is a function system of the form

G(g, a, b) :=
{
e2πibm·g(· − ak)

}
m,k∈Z ,

where a, b > 0 and g ∈ L2(R), while a Gabor frame
G(g, a, b) is a Gabor system for which there exists
constants A,B > 0 such that

A ‖f‖2 ≤
∑

η∈G(g,a,b)

|〈f, η〉|2 ≤ B ‖f‖2 (1)

for all f ∈ L2(R). When the upper bound of (1) holds,
the Gabor system is said to be a Bessel sequence. If
G(g, a, b) satisfies (1), there exists at least one function
h ∈ L2(R), called a dual window, such that G(h, a, b)
is a Bessel sequence and

f =
∑
m,k∈Z

〈
f, e2πibm·g(· − ak)

〉
e2πibm·h(·−ak) (2)

has unconditional L2-convergence for all f ∈ L2(R).
If furthermore ab < 1, there exist infinitely many
functions h ∈ L2(R) for which (2) holds.

We will assume the window g ∈ Cn(R), n ∈ Z≥0∪
{∞}, is non-zero on an open interval (x0, x0 + L) and
supp g = [x0, x0 + L] and consider Gabor systems{
e2πibm·g(· − ak)

}
m,k∈Z with translation parameter

a = L/2 and modulation parameter b ∈ (0, 2/L).

The choice a = L/2 guarantees that each Fourier-
like system

{
e2πibm·g(· − ak0)

}
m∈Z, where k0 ∈ Z,

has overlap of length L/2 with two other Fourier-like
systems (those associated with translation k0 ± 1).

The programme of this paper is to find and construct
“optimal” dual windows, in the sense of time- and
frequency localization. More precisely, we require the
dual windows h to have compact support, i.e, perfect
time localization, and then optimize over the smooth-
ness of h ∈ Cn(R) as this corresponds to decay in the
frequency domain.

The classical method of constructing dual windows
by painless non-orthonormal expansions [4, Theorem
2] is, for a = L/2, restricted to the modulation
range b ∈ (0, 1/L]. Here, we are interested in “large”
modulation values in the range b ∈ (1/L, 2/L) as
this allows for Gabor systems of arbitrarily small
redundancy (ab)−1.

By dilation and translation of the Gabor system, we
can without loss of generality assume that the trans-
lation parameter is a = 1, the modulation parameter
b ∈ (0, 1), and supp g = [−1, 1]. We then define the
window classes:

V n+ (R) = {f ∈ Cn(R) : supp f = [−1, 1] and
|f(x)| > 0 for all x ∈ (−1, 1)} (3)

for each n ∈ Z≥0 ∪ {∞}. By a result of Christensen,
Kim, and Kim [1, Corollary 2.8], it follows that
G(g, 1, b) with g ∈ V 0

+(R) is a frame for L2(R) for
any value of b ∈ (0, 1); in addition, a continuous and
compactly supported dual window always exists. As
the window classes are nested V n+1

+ (R) ⊂ V n+ (R) for
n ∈ Z≥0, this means that G(g, 1, b) is a frame for
L2(R) for any g ∈ V n+ (R) and b ∈ (0, 1).

For each n ∈ Z≥0 ∪ {∞} and g ∈ V n+ (R) the two
authors study in [6] explicit constructions of compactly
supported dual windows. It is shown in [6] (see The-
orem II.4) that given g ∈ V n+ (R) there are infinitely



many compactly supported dual windows with the
same smoothness, i.e., h ∈ Cn(R), for each value of
b ∈ (0, 1). In spite of the plethora of Cn-smooth dual
windows, this smoothness is, in general, optimal; e.g.,
if g ∈ V 0

+(R) is C∞ on (−∞, 0) and (0,∞), but with
a simple discontinuity of g′(x) at x = 0, then no dual
window h in C1(R) exists (see Theorem III.1).

The aim of this note is twofold: we first review the
construction of dual windows from [6] in Section II.
Section III is the main contribution: we show that in
many cases, for g ∈ V n+ (R) \ V n+1

+ (R), it is possible
to go beyond Cn-smoothness for dual windows. In the
main result, Theorem III.2, we show that if the singu-
larities of g ∈ V n+ (R)\V n+1

+ (R) do not occur at certain
points, depending on the modulation parameter b, then
there exist dual windows h with greater smoothness
than Cn.

II. DUAL WINDOWS WITH EQUAL SMOOTHNESS

A. Setup, notation, and dual windows

For g ∈ V n+ (R), define ψ : R→ C by

ψ(x) =
1∑

`∈Z g(x+ `)
for x ∈ R. (4)

Note, that ψ is a 1-periodic function uniformly
bounded from below and above by positive constants.
Furthermore, if g has the partition of unity property∑
`∈Z g(·+ `) = 1, then ψ(x) = 1 for x ∈ R. Assume

that b ∈ (0, 1) and let kmax ∈ Z≥0 be given as

kmax = max

{
k ∈ Z≥0 : k <

b

1− b

}
.

Consider g ∈ V 0
+(R). Let b ∈ R and let z : [0, 1]→

C be any measurable function. We define the following
auxiliary functions for each k ∈ {0, 1, . . . , kmax}:

ηk(x− k) = [−g(x+ 1)z(x+ 1) + bψ(x+ 1)]

· (−1)k
k∏
j=1

g(x+ 1 + j(1/b− 1))

g(x+ j(1/b− 1))
(5)

for x ∈ [−1,−k(1/b− 1)] and

γk(x+ k) = [g(x− 1)z(x) + bψ(x)]

· (−1)k
k∏
j=1

g(x− 1− j(1/b− 1))

g(x− j(1/b− 1))
(6)

for x ∈ [k(1/b− 1), 1]. We then define hz : R→ C as

hz(x) =

kmax∑
k=0

ηk(x)χ[−k−1,−k/b](x)

+

kmax∑
k=0

γk(x)χ[k/b,k+1](x) for x ∈ R \ {0}, (7)

and hz(0) = bψ(0).
The function hz is constructed in such a way that

the window g ∈ V 0
+(R) and hz defined by (7) satisfy

the duality condition by Ron and Shen [7], [8] for
any choice of the function z. This fact (shown in [6])
justifies the definition of hz and leads to the following
result:

Theorem II.1 ( [6]). Let b ∈ (0, 1), let g ∈ V 0
+(R),

and let z : [0, 1] → C be a measurable function. If
G(hz, 1, b) is a Bessel sequence, e.g., if hz ∈ L∞(R),
then G(g, 1, b) and G(hz, 1, b) are dual frames for
L2(R).

By Theorem II.1, it is straightforward to construct
compactly supported dual windows hz of any window
g ∈ V 0

+(R). In fact, the map z 7→ hz parametrizes all
dual windows with support in [−kmax − 1, kmax + 1].
In other words, any dual window h with support
[−kmax − 1, kmax + 1] can be expressed as h = hz
for some choice of z. In the next section we will
relate properties of hz to properties of z. This will
make it feasible to construct compactly supported dual
windows hz with desirable properties.

B. Properties of the dual window hz

To apply Theorem II.1 one needs the Bessel property
of G(hz, 1, b), which is guaranteed if, e.g., hz ∈
L∞(R). The following result shows that boundedness
of hz is equivalent to boundedness of z.

Lemma II.2 ([6]). Suppose g ∈ V 0
+(R). Let b ∈ (0, 1).

Then z ∈ L∞(R) if and only if hz ∈ L∞(R).

A key property of the parametrization z 7→ hz is
that it allows for the construction of dual windows
hz ∈ Cn(R) that are as smooth as the original window
g ∈ V n+ (R). The smoothness conditions are given
in Lemma II.3 and Theorem II.4 below; the given
conditions are easy to satisfy and rely only on the
function values of z ∈ Cn([0, 1]) and its derivatives
at the endpoints x = 0 and x = 1.

Lemma II.3 ([6]). Let b ∈ (0, 1). Suppose g ∈ V 0
+(R).

Then hz ∈ C0(R) if and only if z : [0, 1] → C is a
continuous function satisfying

z(0) =
b ψ(0)

g(0)
=

b

g(0)2
(8)

and
z(1) = −b ψ(1)

g(0)
= − b

g(0)2
. (9)

Note that if g has the partition of unity property, i.e.,∑
`∈Z g(x + `) = 1 for all x ∈ R, then g(0) = 1 and

the right hand sides simplify to b and −b, respectively.

Theorem II.4 ([6]). Let n ∈ Z>0 ∪ {∞}, and let
g ∈ V n+ (R). The following assertions are equivalent:



(i) z ∈ Cn([0, 1]) satisfies (8), (9), and, for each
m = 1, . . . , n, and k = 0, 1

z(m)(k) =−
m∑
`=1

(
m

`

)
g(`)(0)

g(0)
z(m−`)(k)

+ (−1)kbψ
(m)(0)

g(0)
, (10)

(ii) hz ∈ Cn(R).

If g forms a partition of unity by integer translates,
then, for each m = 1, . . . , n, condition (10) reduces to

z(m)(0) = z(m)(1) = 0. (11)

III. DUAL WINDOWS WITH GREATER SMOOTHNESS

The next result is an obstruction result for the
smoothness of dual windows. It shows that if the
(n+1)th derivative of the original window g ∈ V n+ (R)
has a simple discontinuity at x = 0, then the Cn-
smoothness of dual windows is optimal.

Theorem III.1 ([6]). Let b ∈ (0, 1), h ∈ L2(R) and
supp g ⊂ [−1, 1]. For n ∈ Z≥0, we let g ∈ Cn(R)
be a piecewise Cn+1-function. For n = −1, we let
g ∈ L2(R) be a piecewise continuous function. If
G(g, 1, b) and G(h, 1, b) are dual frames and if x = 0 is
a discontinuity point of g(n+1) but g(n+1) is continuous
at x = ±1 then h /∈ Cn+1(R).

As a consequence of Theorem III.1, if g ∈ V n+ (R),
then, in general, one cannot expect dual windows
h ∈ Cm(R) for m > n. However, the main result
of this note, Theorem III.2, exhibits a fairly large
subclass of g ∈ V n+ (R) (given b ∈ (0, 1)) for which
the smoothness of the dual window can go beyond that
of g ∈ V n+ (R). Note that Theorem III.2 assumes the
partition of unity property of the original window g.

Theorem III.2. Let b ∈ (0, 1), let n ∈ Z>0 ∪ {∞},
and let g ∈ V 0

+(R) be a piecewise Cn-function
satisfying

∑
`∈Z g(x + `) = 1 for all x ∈ R. Let

{xr ∈ [−1, 1] : r = 1, . . . , R} denote the finite collec-
tion of points where g(m) for some m = 1, . . . , n is
discontinuous. Let

{tr}Rr=1 = {xr}Rr=1 mod 1. (12)

Define

Sneg =

kmax⋃
k=1

({tr − k(1/b− 1)}Rr=1 (13)

∩ [0, 1− k(1/b− 1)]),

and

Spos =

kmax⋃
k=1

({tr + k(1/b− 1)}Rr=1 (14)

∩ [k(1/b− 1), 1]).

If
tr 6= 0, r = 1, . . . , R, (15)

and
{tr}Rr=1 ∩ Sneg ∩ Spos = ∅, (16)

then there exists h ∈ Cn(R) with compact support so
that G(g, 1, b) and G(h, 1, b) are dual frames.

Remark 1. Before we prove Theorem III.2, let us
provide some intuition behind the used construction.
Let {tr}Rr=1, Sneg and Spos be defined by (12), (13)
and (14), respectively. The role of these three sets
can be explained as follows. Assume for the sake of
the argument that z(x) = 1 for all x. The sets then
describe all the possible discontinuities of hz and its
derivatives up to order n. In particular, the set {tr}Rr=1

describes all the discontinuities that arise from g(x)
and g(x− 1). The sets Sneg and Spos describe all the
discontinuities that arise from

∏k
j=1

g(x+j(1/b−1))
g(x−1+j(1/b−1))

for x ∈ [0, 1 − k(1/b − 1)], k = 1, . . . , kmax and∏k
j=1

g(x−1−j(1/b−1))
g(x−j(1/b−1)) for x ∈ [k(1/b − 1), 1], k =

1, . . . , kmax, respectively.

Proof of Theorem III.2. The proof is based on the
parametrization of all dual windows z 7→ hz and
the following simple fact. If u is a piecewise Cn

function with a discontinuity at x0 and v ∈ Cn(R)
with v(m)(x0) = 0 for m = 0, 1, . . . , n, then uv is
Cn in a neighborhood of x0 and (uv)(m)(x0) = 0 for
m = 0, 1, . . . , n.

To obtain a smooth dual, we must choose the z
function such that it smooths out the discontinuities
created by the g window in the construction of hz .
Hence, to obtain a dual window hz ∈ Cn(R), it
suffices to take z : [0, 1] → C as a Cn-function
satisfying (8), (9), and (11) as well as

z(m)(x) = 0 (17)

for all m = 0, 1, . . . , n and x ∈ {tr}Rr=1,

dm

dxm
(−g(x)z(x) + b) = 0 (18)

for all m = 0, 1, . . . , n and x ∈ Sneg , and

dm

dxm
(g(x− 1)z(x) + b) = 0 (19)

for all m = 0, 1, . . . , n and x ∈ Spos. Note that
z(0)(x) = z(x) = 0 for x ∈ {tr}Rr=1 does not violate
(8) and (9) as 0 does not belong to {tr}Rr=1 due to
assumption (15). Furthermore, none of the conditions
(17), (18) or (19) violate each other due to assumption
(16).

The conditions (17), (18) or (19) are formulated with
the relation to hz in mind. However, for construction
of dual windows we need to specify z, and it is,



therefore, more convenient to consider the equations
with z(m) being isolated. Now, under the assumption
of Theorem III.2, we have a dual window hz ∈ Cn(R),
n ∈ Z>0 ∪ {∞}, if z satisfies (8), (9), (11),

z(x) =


0, x ∈ {tr}Rr=1 ,
b

g(x) , x ∈ Sneg,
− b
g(x−1) , x ∈ Spos,

(20)

and the following conditions for each m = 1, . . . , n:

z(m)(x) = 0 for all x ∈ {tr}Rr=1, (21)

z(m)(x) = −
m∑
`=1

(
m

`

)
g(`)(x)

g(x)
z(m−`)(x) (22)

for all x ∈ Sneg , and

z(m)(x) = −
m∑
`=1

(
m

`

)
g(`)(x− 1)

g(x− 1)
z(m−`)(x) (23)

for all x ∈ Spos.

Example 1. Let b ∈ (0, 1), and let g ∈ V 0
+(R) be a

C∞-function except at a single point x /∈ {−1, 0, 1},
where g′(x) fails to be continuous. Assume also that∑
`∈Z g(x+ `) = 1 for all x ∈ R. Despite the lack of

smoothness of g /∈ C1(R), we can, by Theorem III.2,
construct dual windows h ∈ Cn(R) with compact
support for any n ∈ Z≥0 or even n = ∞. More
concretely, we take z to be a Cn-function satisfying
the conditions (8), (9), (11), and (20)-(23).

Example 2. Let b = 3
5 and let g ∈ V 0

+(R) be piecewise
C∞-function with simple discontinuities of g′(x) at
{xr}4r=1 =

{
− 3

4 ,−
1
5 ,

1
4 ,

4
5

}
, and assume g satisfies∑

`∈Z g(·+`) = 1. Since g ∈ V 0
+(R) the Gabor system

G(g, 1, b) is a frame for L2(R). We first calculate
kmax = 1 and the three sets:

{tr}4r=1 =

{
1

4
,
4

5
,
1

4
,
4

5

}
,

Sneg =

{
2

15

}
and Spos =

{
11

12

}
.

Since these sets satisfy the conditions (15) and (16),
we can apply Theorem III.2 to construct a compactly
supported dual window h ∈ Cn(R) for any value of
n ∈ Z≥0∪{∞}. As above we simply need z to satisfy
(8), (9), (11), and (20)-(23)

Let us here illustrate the construction for n = 1. We
have hz ∈ C1(R) if a function z ∈ C1(R) satisfies

z(x) =



b, x = 0,
b

g( 2
15 )

, x = 2
15 ,

0, x ∈
{

1
4 ,

4
5

}
,

− b

g(− 1
12 )

, x = 11
12 ,

−b, x = 1

x
0.5 1-1

1

Figure 1. The spline function z ∈ C1(R) from Example 2.
It is a piecewise polynomial of degree 3 with knots x =
0, 2/15, 1/4, 4/5, 11/12, 1.

x
-2 -1 1 2-0.5

0.5
1

Figure 2. The window g ∈ V 0
+(R)\V 1

+(R) (red) and a dual window
hz ∈ C1(R) (blue) corresponding to z given as in Figure 1.

and

z′(x) =


0, x ∈

{
0, 14 ,

4
5 , 1
}
,

−b g′
(

2
15

)
/g
(

2
15

)2
, x = 2

15 ,

b g′
(
− 1

12

)
/g
(
− 1

12

)2
, x = 11

12 .

We take z ∈ C1(R) to be the unique de-
gree 3 piecewise polynomial with knots at x =
0, 2/15, 1/4, 4/5, 11/12, 1 that satisfies the above 12
conditions, see Figure 1.

The window g ∈ V 0
+(R) \ V 1

+(R) and the cor-
responding dual window hz ∈ C1(R) with support
supphz =

[
−2,− 5

3

]
∪ [−1, 1] ∪

[
5
3 , 2
]

are shown in
Figure 2.
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