
A Rate-Distortion Framework for Explaining
Deep Neural Network Decisions

Stephan Waeldchen∗, Jan Macdonald∗, Sascha Hauch∗, and Gitta Kutyniok∗
∗Technische Universität Berlin, Institut für Mathematik, Berlin, Germany

Emails: stephanw@math.tu-berlin.de, macdonald@math.tu-berlin.de, hauch@math.tu-berlin.de, kutyniok@math.tu-berlin.de

Abstract—We propose a rate-distortion framework for explain-
ing deep neural network decisions. We formulate the task of
determining the most relevant input signal components for a
classifier prediction as an optimisation problem. For the special
case of binary signals and Boolean classifier functions we show it
to be NPPP-complete as well as NP-hard to approximate. Finally,
we present a heuristic solution strategy based on assumed density
filtering and tailored specifically to the case of deep ReLU neural
network classifiers for which we present numerical experiments.

I. INTRODUCTION

Recently machine learning techniques in general and deep
neural networks in particular have been successfully applied to
a variety of problems such as image classification [1], objec-
tion recognition [2], or speech recognition [3]. Although these
techniques empirically achieve impressive predictive accuracy
the theoretical foundation for their success is often lacking.
An increasing interest in utilising deep learning methods
also for high-stakes applications, such as medical imaging
and diagnosis, in which reliable predictions are of crucial
importance, have led to a growing desire to understand and
interpret the predictions and decisions made by these methods
and obtain information about their uncertainty.

Over the last years several methods for estimating uncertain-
ties in neural networks [4] as well as methods to interpret their
decisions [5], [6] have been proposed. Here, we introduce a
rigorous approach to obtaining interpretable neural networks.
More precisely, in section II we formulate the problem of
determining the most relevant components of an input signal
for a classifier prediction as an optimisation problem in a
rate-distortion framework. We show in section III that this
problem is generally hard to solve and to approximate, which
justifies the use of heuristic methods. In section IV we propose
a problem relaxation together with a heuristic solution strategy
tailored to our rate-distortion formulation of the problem, and
finally present numerical experiments in section V.

A. Notation

Throughout the paper d ∈ N denotes the dimension of the
signal domain, x ∈ [0, 1]d is an arbitrary fixed input signal
and Φ: [0, 1]d → [0, 1] is a classifier function for a signal class
C ⊆ [0, 1]d. The function Φ can for example be described by
a neural network. The classification score Φ(x) represents the
classifiers prediction on how likely it is that x belongs to the
class C. We denote [d] = {1, . . . , d} and for a subset S ⊆ [d]
denote by xS the restriction of x to components indexed by

S. Finally, 1 ∈ Rd denotes a vector of all ones, diag (x)
the diagonal matrix with entries given by x, and � (resp. �)
the component-wise Hadamard product (resp. quotient) of two
vectors or matrices of the same dimensions. For simplicity we
write x2 = x�x. Throughout, univariate functions applied to
vectors will be considered to act component-wise.

II. RATE-DISTORTION VIEWPOINT

The task is to find a subset S ⊆ [d] of relevant components
of x and its complement Sc of non-relevant components such
that fixing the relevant components already determines the
output of the classifier for almost all possible assignments
to the non-relevant components. More precisely, let V be a
probability distribution on the domain [0, 1]d and n ∼ V a
random vector. We define the obfuscation of x with respect to
S and V as a random vector y that is deterministically defined
on S as yS = xS and distributed on the complement according
to ySc = nSc . We write VS for the distribution of y, keeping
the dependence on x implicit. The expected distortion of S
with respect to Φ, x, and V is defined as

D(S) = D(S,Φ,x,V) = Ey∼VS

[
1

2
(Φ(x)− Φ(y))

2

]
. (1)

As Φ, x, and V are fixed throughout this paper we will simply
use D(S) from now on.

We naturally arrive at a rate-distortion trade-off that intu-
itively gives us a measure of relevance. We define the rate-
distortion function as

R(ε) = min { |S| : S ⊆ [d], D(S) ≤ ε } , (2)

again implicitly dependent on x, V and Φ. The smallest set S
that ensures a limited distortion will be composed of the most
relevant input components.

We now want to discuss the difficulty of finding such a set.
Note, that the trivial choice of setting S = [d] ensures zero
distortion. We show that for distortion limits greater than zero
one cannot systematically find a set of relevant components
that is significantly smaller than the trivial set. This even holds
when we restrict the problem to the set of functions defined
as neural networks which is the class of functions that we are
particularly interested in.

A. Neural Network Functions

Let L ∈ N, d1, . . . , dL−1 ∈ N and denote d0 = d, dL = 1.
Further let (W1,b1) , . . . , (WL,bL) with Wi ∈ Rdi×di−1 ,

bi ∈ Rdi for i ∈ [L] be the weight matrices and bias vectors
of a L-layer neural network. We then consider functions of
the form

Φ(x) = WL%(WL−1%(. . . %(W1x + b1) . . .) + bL−1) + bL

where the activation function % : R→ R is applied component-
wise. A commonly used activation function is the rectified
linear unit (ReLU) activation %(x) = max {0, x}.

We will see that our hardness results hold for the special
case of Boolean circuits that can be represented by ReLU
neural networks of moderate size1.

III. COMPLEXITY THEORETIC ANALYSIS

Let us for now consider the special case of binary input sig-
nals x ∈ {0, 1}d and functions Φ : {0, 1}d → {0, 1} described
as Boolean circuits, as well as the uniform distribution over
binary vectors, i.e. V = U

(
{0, 1}d

)
.

In that case for any realisation of the obfuscation y the
difference Φ(x)−Φ(y) can either be zero or one. Hence, we
can give a simple counting formulation of (1) that allows us
to classify the hardness of the problem. Define the sets

AS :=
{

y ∈ {0, 1}d : xS = yS

}
,

BS :=
{

y ∈ {0, 1}d : xS = yS and Φ(x) = Φ(y)
}
.

The set BS is simply the subset of AS satisfying the constraint
Φ(x) = Φ(y).

Definition 1. We call S a δ-relevant set for Φ and x, with
δ ∈ (0, 1], if |BS |

|AS | ≥ δ.

The task of calculating the size of the smallest δ-relevant
set is the same as calculating the rate R(ε) for a maximal
distortion of ε = 1

2 (1− δ).

Definition 2. The RELEVANT-INPUT problem is:
GIVEN: Φ : {0, 1}d → {0, 1}, x ∈ {0, 1}d, δ ∈ (0, 1], k ∈ [d].
DECIDE: Does there exist an S ⊆ [d] with |S| ≤ k such that
S is δ-relevant for Φ and x?

The optimisation version of this problem, called MINIMAL
RELEVANT-INPUT, asks for the smallest k, such that there
exists a δ-relevant set of size at most k. The following two
hardness results hold.

Theorem 3. RELEVANT-INPUT is NPPP-complete.

The class NPPP is the class of all problems decidable by
a non-deterministic Touring machine equipped with an oracle
for problems in PP [7]. The class NPPP appears frequently
in artificial intelligence tasks, such as optimisation under
uncertainty and is assumed significantly harder than either NP
and PP. A more practically relevant result is the following.

Theorem 4. Assume P 6= NP, then for any α ∈ (0, 1) there
is no polynomial time approximation algorithm for MINIMAL
RELEVANT-INPUT with an approximation factor of d1−α.

1meaning that the depth L can be chosen constant and the total number of
neurons

∑
i di bounded by a polynomial in d.

For the proofs see [8] (in preparation). Theorem 4 shows
that no efficient approximation algorithm exists (unless P =
NP). Either we have to resort to heuristics, or introduce
stronger restrictions on the problem. We choose the former
and present a general heuristic for neural networks.

IV. PROBLEM RELAXATION AND SOLUTION HEURISTIC

In section III we considered Boolean circuit functions
Φ: {0, 1}d → {0, 1} and saw that MINIMAL RELEVANT-
INPUT is hard to solve and to approximate. Thus, we further
relax the problem.

A. Continuous Problem Relaxation

Instead of binary relevance decisions (relevant versus non-
relevant) encoded by the set S, we allow for a continuous
relevance score for each component, encoded by the vector
s ∈ [0, 1]d. We redefine the obfuscation of x with respect to
s as a component-wise convex combination

y = x� s + n� (1− s) (3)

of x and n ∼ V . As before we write Vs for the distribution
of y. This is a generalisation of the obfuscation introduced in
section II which can be recovered by choosing s equal to one
on S and zero on Sc. The natural relaxation of the size of
the set S is given by the norm ‖s‖1. Analogous to before we
define the distortion

D(s) = Ey∼Vs

[
1

2
(Φ(x)− Φ(y))

2

]
.

Instead of the hard constraint D(s) ≤ ε as in (2) we formulate
the continuous rate minimisation problem in its Lagrangian
formulation

minimize D(s) + λ‖s‖1 (4)

subject to s ∈ [0, 1]d

with a regularisation parameter λ > 0. Depending on the
activation function, the distortion does not need to be differen-
tiable. However, the ReLU activation is differentiable almost
everywhere. As commonly done during the training of neural
networks, we simply use (projected) gradient descent to find
a stationary point of (4).

The exact calculation of expectation values for arbitrary
functions is in itself already a hard problem. One possibility
to overcome this issue is to approximate the expectation by
a sample mean and use batched stochastic gradient descent,
similar to the way neural networks are trained. Here however,
we focus on a second possibility, which takes the specific
structure of Φ more into account.

B. Assumed Density Filtering

We utilise the layered structure of Φ and propagate the
distribution of the neuron activations through the network. No
family of distributions is invariant under the transformation of
a neural network layer, except for a mixture of δ-distributions
which amounts to the sampling approach discussed above.

Instead we use an approximate method, called assumed
density filtering (ADF), see for example [9], [10], which has
recently also been used for ReLU neural networks in the
context of uncertainty quantification [11]. In a nutshell, at
each layer we assume a Gaussian distribution for the input,
transform it according to the layers weights W, biases b, and
activation function %, and project the output back to the nearest
Gaussian distribution (w.r.t. KL-divergence). This amounts to
matching the first two moments of the distribution [9].

Using the bias-variance decomposition of the mean squared
error, we can rewrite

D(s) =
1

2
(Φ(x)− Ey∼Vs [Φ(y)])

2
+

1

2
Vy∼Vs [Φ(y)] .

The distortion is determined by the first and second moment
of the output layer. From (3) it is straight-forward to obtain
the first and second moment of y depending on s. We now
derive the ADF rules to propagate them through the network
layers to get an explicit expression for the distortion.

Let z ∼ N (µ,Σ). An affine linear transformation acts on
the mean and covariances in the well-known way

E [Wz + b] = Wµ + b, (5)
V [Wz + b] = WΣW∗, (6)

where V denotes the covariance matrix.
The ReLU non-linearity % presents a difficulty as it changes

a Gaussian distribution into a non-Gaussian one. Let f and F
be the probability density and cumulative distribution function
of the univariate standard normal distribution, let σ be the
vector of the diagonal entries of Σ, and η = µ� σ. Then

E [%(z)] = σ � f(η) + µ� F (η).

Unfortunately there is no closed form expression for the off-
diagonal terms of the covariance matrix of %(z). We either
make the additional assumption that the network activations
in each layer are uncorrelated, which amounts to propagating
only the diagonal Vdiag of the covariance matrices through the
network and simplifies (6) to

Vdiag [Wz + b] = (W �W)σ,

and results in

Vdiag [%(z)] = µ�σ�f(η)+
(
σ2 + µ2

)
�F (η)−E [%(z)]

2
.

Or we use an approximation for the full covariance matrix

V [%(z)] ≈ NΣN,

with N = diag (F (η)). This approximation ensures positive
semi-definiteness. Altogether, combining the linear transfor-
mation with the non-linear one, tells us how to propagate the
first two moments through a ReLU neural network layer in
the ADF framework. We investigate both the diagonal as well
as the full covariance matrix method in our numerical inquiry.

V. NUMERICAL EXPERIMENTS

We present a numerical experiment for interpretable neural
networks comparing our proposed method to several other
widely used techniques. We generate relevance mappings
for greyscale images of handwritten digits from the MNIST
dataset [12]. An example image from the dataset can be seen
in fig. 1 (top-left).

The focus of this paper is on the interpretability of neural
networks, not on their training so we will keep the description
of the training process quite brief.

The methods we compare to are: Layer-wise Relevance
Propagation (LRP) [5], Deep Taylor Decompositions [6],
Sensitivity Analysis, the Input × Gradient method, and simply
taking the input signal itself as a relevance map. Different
interpretation approaches produce differently scaled and nor-
malised relevance mappings which makes it hard to directly
compare them. Some methods generate non-negative map-
pings corresponding to the importance for the classifier score,
whereas other methods also generate negative relevances that
can be interpreted as speaking against a classifier decision.

To allow for a fair comparison of the methods we propose
a variant of the relevance ordering-based test introduced in
[13]. Each relevance mapping induces an ordering of the
input signal components by sorting them according to their
relevance score (breaking ties randomly). Starting with the
least relevant pixels, we then replace increasingly large parts
of the input signal by random components and observe the
change in the classifier score. A good relevance mapping will
lead to slow changes in the classifier score when the most
relevant components are replaced last.

We use Tensorflow/Keras for our experiments. All compari-
son relevance mappings are generated using Innvestigate [14].

For the experiment we trained a simple six-layer con-
volutional neural network to classify greyscale images of
handwritten digits using the MNIST dataset [12]. We trained
for 80 epochs with mini-batches of size 128.

An example for the relevance mappings generated by our
as well as the comparison methods is shown in fig. 1. We
restricted the neural network output to the class with the
highest prediction score before the softmax normalisation.
We observe that both variants of our method generate almost
identical relevance mappings. The top-right area of the image
discriminating the digit six from, for example, an eight or
a zero is mostly highlighted by our method. The relevance
ordering based comparison test is shown in fig. 3. We see that
our proposed method results in a classifier score that remains
almost constant until about the 90% least relevant input com-
ponents have been randomised. Samples from the comparison
test with the 60% least relevant components randomised are
visualised in fig. 2.

ACKNOWLEDGEMENTS

The authors would like to thank Philipp Petersen for several
fruitful discussions during the early stage of the project. S. W.
and J. M. acknowledge support by DFG-GRK-2260 (BIOQIC).
S. H. is grateful for support by CRC/TR 109 “Discretization in

Input LRP-ε Sensitivity Analysis ours (diagonal)

Input × Gradient LRP-α-β Deep Taylor ours (full)

Figure 1. Relevance mappings generated by several methods for an image
from the MNIST dataset classified as digit six by our network. The colourmap
indicates positive relevances as red and negative relevances as blue.

Input LRP-ε Sensitivity Analysis ours (diagonal)

Input × Gradient LRP-α-β Deep Taylor ours (full)

Figure 2. Samples from the relevance ordering comparison test for an image
from the MNIST dataset with the 60% least relevant input components
randomised.

0 50 100

0

0.5

1

percentage of noisy components

cl
as

si
fie

r
sc

or
e

ours (diagonal)
LRP-ε
LRP-α-β
Deep Taylor
Sensitivity
Input × Gradient
Input

Figure 3. Relevance ordering based comparison test for relevance mappings
generated by several methods for an image from the MNIST dataset. The most
relevant components are randomised last. Classifier scores for the original
input signal and the completely randomised image are shown as horizontal
dashed lines for reference. The vertical line marks 60% randomisation (cf.
fig. 2).

Geometry and Dynamics”. G. K. acknowledges partial support by the
Bundesministerium für Bildung und Forschung (BMBF) through the
Berliner Zentrum for Machine Learning (BZML), Project AP4, by the
Deutsche Forschungsgemeinschaft (DFG) through Grants CRC 1114
“Scaling Cascades in Complex Systems”, Project B07, CRC/TR 109
“Discretization in Geometry and Dynamics”, Projects C02 and C03,
RTG DAEDALUS (RTG 2433), Projects P1 and P3, RTG BIOQIC
(RTG 2260), Projects P4 and P9, SPP 1798 “Compressed Sensing in
Information Processing”, Project Coordination and Project Massive
MIMO-I/II, by the Berlin Mathematics Research Center MATH+,
Projects EF1-1 and EF1-4, and by the Einstein Foundation Berlin.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[2] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for
object detection,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp.
2553–2561. [Online]. Available: http://papers.nips.cc/paper/5207-deep-
neural-networks-for-object-detection.pdf

[3] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 05 2013, pp. 6645–6649.

[4] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,” in
Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 6402–
6413. [Online]. Available: http://papers.nips.cc/paper/7219-simple-and-
scalable-predictive-uncertainty-estimation-using-deep-ensembles.pdf

[5] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation,” PLOS ONE, vol. 10,
no. 7, pp. 1–46, 07 2015. [Online]. Available: https://doi.org/10.1371/
journal.pone.0130140

[6] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1–15, 2018.

[7] J. Gill, “Computational complexity of probabilistic turing machines,”
SIAM Journal on Computing, vol. 6, no. 4, pp. 675–695, 1977.

[8] S. Waeldchen, J. Macdonald, S. Hauch, and G. Kutyniok, “The compu-
tational complexity of understanding network decisions,” in preparation.

[9] T. P. Minka, “A family of algorithms for approximate bayesian in-
ference,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2001, aAI0803033.

[10] X. Boyen and D. Koller, “Tractable inference for complex stochastic
processes,” in Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, ser. UAI’98. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1998, pp. 33–42. [Online].
Available: http://dl.acm.org/citation.cfm?id=2074094.2074099

[11] J. Gast and S. Roth, “Lightweight probabilistic deep networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
June 2018, pp. 3369–3378.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[13] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller,
“Evaluating the visualization of what a deep neural network has learned,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
no. 11, pp. 2660–2673, 11 2017.

[14] M. Alber, S. Lapuschki, P. Seegerer, M. Hägele, K. T. Schütt,
G. Montavon, W. Samek, K. Müller, S. Dähne, and P. Kindermans,
“innvestigate neural networks!” CoRR, vol. abs/1808.04260, 2018.
[Online]. Available: http://arxiv.org/abs/1808.04260

