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Abstract—For a partition of [0, 1] with nodes 0 = a0 <
a1 < · · · < an−1 < an = 1, we construct a partition of Z,
Λ1, Λ2, . . . , Λn such that E(Λj) is a Riesz basis for L2[aj−1, aj ].
Our construction also guarantees that E

(
∪k

j=1Λj

)
is a Riesz basis

for L2[0, ak], and E
(
∪n

j=k+1 Λj

)
is a Riesz basis for L2[ak, 1].

I. INTRODUCTION

In this paper we develop a method for relating partitions
{In}Nn=1 of the interval [0, 1] to partitions {Λn}Nn=1 of the
integers Z in such a way that the basis properties of the sets

E(Λn) = {e2πiλx : λ ∈ Λn}
are preserved under the formation of unions of contiguous
intervals in the partition {In}. In particular we prove the
following theorem.

Theorem 1.1: Let 0 = a0 < a1 < · · · < an−1 < an = 1.
Then there exists a partition {Λ1, Λ2, . . . , Λn} of Z such that
(1) For j = 1, 2, . . . , n, E(Λj) is a Riesz basis for

L2[aj−1, aj ].
(2) For every 1 ≤ k ≤ n, E

(
∪kj=1 Λj

)
is a Riesz basis for

L2[0, ak]
(3) For every 0 ≤ k ≤ n−1, E

(
∪nj=k+1 Λj

)
is a Riesz basis

for L2[ak, 1].
From this we can easily construct Riesz bases of expo-

nentials with integer frequencies to partitions of arbitrary
subintervals of [0, 1].

Theorem 1.2: Given [α, β] ⊆ [0, 1], and a partition of [α, β],
α = a0 < a1 < · · · < an−1 < an = β, we construct
a collection of disjoint subsets of Z, Λ1, Λ2, . . . , Λn such
that E(Λj) is a Riesz basis for L2[aj−1, aj ] and such that
E
(
∪kj=1 Λj

)
is a Riesz basis for L2[α, ak], and such that

E
(
∪nj=k+1 Λj

)
is a Riesz basis for L2[ak, β].

We also obtain the following result for infinite partitions of
[0, 1].

Theorem 1.3: Let {ak}k∈N be strictly increasing, a1 > 0
and ak → c, and let a0 = 0. Then there exists a partition
{Λk}k∈N of Z with the property that for every k ∈ N,
(1) E

(
Λk
)

is a Riesz basis for L2[ak−1, ak],
(2) E

(
∪kj=1 Λj

)
is a Riesz basis for L2[0, ak] and

(3) E
(
∪∞j=k+1 Λj

)
is a Riesz basis for L2[ak, 1].

Detailed proofs of these results can be found in [8]. In this
paper we give outline the proof.

In a recent breakthrough result, Kozma and Nitzan [5] (see
also [6]) construct a Riesz basis of the form

E(Λ) = {e2πiλx : λ ∈ Λ}
where Λ ⊆ Z for

L2(I1 ∪ I2 ∪ · · · ∪ In)

where {Ij}nj=1 is a disjoint collection of subintervals of [0, 1].
As a central part of the proof, the authors show that under
some circumstances it is possible to “combine Riesz bases”
in the sense described above, but as the authors point out in
the paper, their construction does not necessarily give subsets
Λj such that E(Λj) forms a Riesz basis for L2(Ij) and Λ =
∪nj=1Λj . Indeed it is in general not true that the union of Riesz
bases for disjoint intervals forms a Riesz basis for the union
of the intervals (see [5]).

II. ONE INTERVAL AND SEIP’S LEMMA

Theorem 1.2 for n = 1 follows immediately from
Lemma 2.1 of Seip by the translation invariance property of
exponential bases.

Lemma 2.1: (Seip [10]) For any 0 < α < 1, there exists a
subset Λ ∈ Z such that E(Λ) is a Riesz basis for L2[0, α].

The main tool in the proof of this lemma is Avdonin’s
Theorem, a version of which is given below.

Theorem 2.2: (Avdonin [1]) Let L > 0 and suppose that
there exists an injective map

ϕ :
1

L
Z→ R

with the property that the range of ϕ is separated1 and such
that for some c, R > 0

sup
m∈Z

∣∣∣∣
∑

k
L∈[mR,(m+1)R)

ϕ

(
k

L

)
−
(
k

L
− c
)∣∣∣∣ <

1

4L
. (1)

1A set S ⊆ R is separated if there exists δ > 0 such that if x, y ∈ S,
x 6= y then |x− y| ≥ δ.



Then E
(
ϕ
(
1
L Z
))

is a Riesz basis for L2(I) for any interval I
with |I| = L. We refer to the quantity on the left side of (1)
as the Avdonin bound of ϕ

(
k
L

)
with respect to 1

LZ.
The proof of Lemma 2.1 is in the same spirit as in [10]

but differs in such a way as to allow for extensions like
Theorem 3.2 for two intervals and provides a theme that
reappears in the proof of Theorem 1.1 and its variants for
n intervals.

Proof: (Lemma 2.1, [9]) Let ε > 0 and define ϕ : 1
αZ→

Z to be the function that rounds each n
α to the nearest integer,

i.e.,

ϕ

(
n

α

)
=





⌊
n
α

⌋
if
[
n
α

]
< 1/2

⌈
n
α

⌉
if
[
n
α

]
> 1/2

(2)

with an appropriate definition being made when n
α is a half-

integer. Here and in what follows, [x] = x (mod 1), bxc is the
largest integer less than or equal to x, and dxe is the smallest
integer greater than or equal to x.

Next we want to show that there exists N ∈ N such that
∣∣∣∣

1

N

(m+1)N−1∑

n=mN

ϕ

(
n

α

)
− n

α

∣∣∣∣ < ε. (3)

To see that this is the case, suppose first that α is rational with
α = N0

K0
in lowest terms. Clearly, 1

α Z has period K0 (that is,
1
α Z+K0 = 1

α Z) and so it suffices to consider the sum in (3)
only for m = 0 and N a multiple of K0. It can be shown that
if N = 2K0, and with an appropriate choice of ϕ

(
n
α

)
when

n
α is a half-integer, that the sum in (3) vanishes identically.

If α is irrational, define for x ∈ [0, 1],

f(x) =

{
−x if x ∈ [0, 1/2]

1− x if x ∈ (1/2, 1]

and note that ϕ(x) − x = f([x]). Since f is piecewise
continuous, it can be shown using a variation of the proof
of the Weyl Equidistribution Theorem that given ε > 0, then
for all N ∈ N sufficiently large,∣∣∣∣ 1

N

(m+1)N∑
n=mN

f

([
n

α

])
−
∫ 1

0

f(t) dt

∣∣∣∣ =

∣∣∣∣ 1

N

(m+1)N∑
n=mN

f

([
n

α

])∣∣∣∣ < ε

and (3) follows. Finally we note that by choosing ε < 1
4α ,

letting Λ = ϕ
(
1
αZ
)
, and applying Theorem 2.2, the lemma

follows.

III. TWO INTERVALS

From general principles it can be shown that, with α and
Λ as in Lemma 2.1 E(Z \ Λ) is a Riesz basis for L2[α, 1],
which amounts to a proof of Theorem 1.1 for two intervals.
The result follows from a theorem related to the notion of the
Naimark’s complement of an orthogonal basis (see [7], [2],
[3]). For our purpose, we state a special case of that theorem.

Theorem 3.1: Let 0 < α < 1, H = L2[0, 1] and
P : L2[0, 1] → L2[0, α] be given by Pf = fχ[0,α]. Suppose
that we partition Z as {Λ1, Λ2} and that E(Λ1) is a Riesz
basis for L2[0, α]. Then E(Λ2) is a Riesz basis for L2[α, 1].

In order to extend Theorem 1.1 to more than two intervals,
we make the further surprising observation (see [9]) that the

set Z \ Λ is obtained by rounding each point of the set
1

1−αZ + 1
2(1−α) to its nearest integer (with an appropriate

choice being made when such point is a half-integer). Theo-
rem 3.2 forms an extension of Lemma 2.1 and when combined
with Theorem 2.2, gives Theorem 1.1 when n = 2. We present
some details in this case as it forms the framework for the
general result for arbitrary n.

Theorem 3.2: [9] Given 0 < α < 1 and ε > 0, define ϕ on
1
αZ by (2) and ψ on 1

1−αZ by

ψ

(
n

1− α

)

=





⌊
n

1−α + 1
2(1−α)

⌋
if
[

n
1−α + 1

2(1−α)
]
< 1/2

⌈
n

1−α + 1
2(1−α)

⌉
if
[

n
1−α + 1

2(1−α)
]
> 1/2

(4)

where ϕ and ψ are defined appropriately on half-integers. Then

(1)
{
ϕ
(
1
αZ
)
, ψ
(

1
1−αZ

)}
forms a partition of Z, and

(2) there exists N ∈ N such that with R = N
1−α ,

sup
m∈Z

∣∣∣∣
1

R

∑

j
α∈[mR,(m+1)R)

ϕ

(
j

α

)
− j

α

∣∣∣∣ < ε, (5)

and

sup
m∈Z

∣∣∣∣
1

R

∑

j
1−α+ 1

2(1−α)

∈[mR,(m+1)R)

ψ

(
j

1− α

)
−
(

j

1− α +
1

2(1− α)

)∣∣∣∣ < ε.

(6)
Remark 3.3: The ambiguity in the definitions of ϕ and ψ

when n
α and k

1−α + 1
2(1−α) are half-integers will only occur

when α is rational and, if α = N0

K0
in lowest terms, when N0 is

even. In this case, when n
α is a half integer, nα = k

1−α+ 1
2(1−α)

for some k ∈ Z, and we define ϕ
(
n
α

)
=
⌊
n
α

⌋
and ψ

(
k

1−α
)

=⌈
k
α + 1

2(1−α)
⌉

or vice versa so that the points are mapped to
distinct integers. This guarantees that the sums in (5) and (6)
vanish identically.

The fundamental observations leading to the proof of The-
orem 3.2 are contained in the following lemma.

Lemma 3.4: Given j ∈ Z, let I =
[
j−1
1−α ,

j
1−α

)
. Then the

following hold.

(1) If there are exactly K elements of 1
α Z in I , then there

are exactly K + 1 integers in I .
(2) If n

α ∈ I , and n
α <

j−1
1−α + 1

2(1−α) then ϕ
(
n
α

)
=
⌊
n
α

⌋
and

if n
α >

j−1
1−α + 1

2(1−α) then ϕ
(
n
α

)
=
⌈
n
α

⌉
.

(3) The numbers n
α and k

1−α + 1
2(1−α) are never within

distance 1
2 of the same integer, unless they are equal.

(4) If for some k ∈ Z, nα = k
1−α + 1

2(1−α) , then the common
value is a half-integer.
Proof: (Theorem 3.2) By considering intervals of the

form I =
[
j−1
1−α ,

j
1−α

)
, for j ∈ Z, we first observe that

by Lemma 3.4(3) and (4), ϕ
(
n
α

)
and ψ

(
j−1
1−α + 1

2(1−α)
)

will
never map to the same integer, so that the ranges of ϕ and ψ
restricted to I are disjoint. Also, by Lemma 3.4(1), all integers



in I are in the image of either ϕ or ψ restricted to I . From
this (1) follows.

To see that (2) holds, we observe that, as in the proof of
Lemma 2.1, if α is rational with α = N0

K0
in lowest terms,

then the sets 1
α Z, 1

1−α Z + 1
2(1−α) , and Z have a common

period K0 and that for k ∈ [0, 2K0), the sums (5) and (6)
vanish identically with an appropriate choice of ϕ and ψ on
the half-integers.

If α is irrational, then ψ(x) − (x − 1
2(1−α) ) = f

([
x −

1
2(1−α)

])
where f is defined in the proof of Lemma 2.1. Using

the same equidistribution argument, (6) follows.
A simple dilation argument gives the following corollary.
Corollary 3.5: Let 0 < a < b, and ε > 0. Then there exist

injective maps

ϕ :
1

a
Z −→ 1

a+ b
Z, ψ :

1

b
Z −→ 1

a+ b
Z

such that
(1)

{
ϕ
(
1
aZ
)
, ψ
(
1
bZ
)}

forms a partition of 1
a+bZ, and

(2)

sup
m∈Z

∣∣∣∣
1

R

∑

j
a∈[mR,(m+1)R)

ϕ

(
j

a

)
− j

a

∣∣∣∣ < ε, (7)

and

sup
m∈Z

∣∣∣∣
1

R

∑

j
b+

1
2b

∈[mR,(m+1)R)

ψ

(
j

b

)
−
(
j

b
+

1

2b

)∣∣∣∣ < ε. (8)

IV. THREE INTERVALS

In this section we will describe how to prove Theorem 1.1
for a partition of [0, 1] into three intervals. This will illustrate
the fundamental idea that leads to the general result.

Suppose that 0 = a0 < a1 < a2 < a3 = 1. Applying
Theorem 3.2 with α = a2 and some ε > 0 we can define
injections

Ψ:
1

1− a2
Z→ Z, σ :

1

a2
Z→ Z

such that (1) and (2) hold. If 0 < ε < 1
4 , we may apply

Theorem 2.2 and assert that E
(
Ψ
(

1
1−a2Z

))
is a Riesz basis for

L2[a2, 1], and that E
(
σ
(

1
a2
Z
))

is a Riesz basis for L2[0, a2].
Now applying Corollary 3.5 with a = a1 and b = a2 − a1,

so that a+b = a2 and choosing δ > 0, we can define injections

ϕ̂ :
1

a1
Z→ 1

a2
Z, ψ̂ :

1

a2 − a1
Z→ 1

a2
Z

such that Corollary 3.5(1) and (2) hold with δ replacing ε.
Now consider the following diagram.

1
a1

Z ϕ̂−→ 1
a2

Z σ−→ Z
1

a2−a1 Z
ψ̂−→ 1

a2
Z σ−→ Z.

Note that because
{
ϕ̂
(

1
a1
Z
)
, ψ̂
(

1
a2−a1Z

)}
forms a partition

of 1
a2

Z,
{
σ ◦ ϕ̂

(
1
a1
Z
)
, σ ◦ ψ̂

(
1

a2−a1Z
)}

forms a partition of

σ
(

1
a2
Z
)
. Also, since

{
Ψ
(

1
1−a2 Z

)
, σ
(

1
a2

Z
)}

forms a parti-
tion of Z,

{
σ ◦ ϕ̂

(
1
a1
Z
)
, σ ◦ ψ̂

(
1

a2−a1Z
)
, Ψ
(

1
1−a2 Z

)}
also

forms a partition of Z.
We wish now to assert that for some R > 0,

sup
m∈Z

∣∣∣∣ 1

R

∑
k
a1
∈[mR,(m+1)R)

σ ◦ ϕ̂
(
k

a1

)
− k

a1

∣∣∣∣
and

sup
m∈Z

∣∣∣∣ 1

R

∑
k

a2−a1
+ 1

2(a2−a1)

∈[mR,(m+1)R)

σ◦ψ̂
(

k

a2 − a1

)
−
(

k

a2 − a1
− 1

2(a2 − a1)

)∣∣∣∣
are sufficiently small that Theorem 2.2 can be applied so that
we can then assert that E

(
σ ◦ ϕ̂

(
1
a1
Z
))

is a Riesz basis for
L2[0, a1], and that E

(
σ ◦ ψ̂

(
1

a2−a1Z
))

is a Riesz basis for
L2[a1, a2]. However, in order to guarantee that this is the
case, we must locally modify the injections ϕ̂ and ψ̂ so that
the above averages are small.2 This is done via the following
theorem which forms the crux of the general argument. The
proof is quite intricate and can be found in [8].

Theorem 4.1: Suppose that for some a, b, ε, δ > 0 there
exist injective maps

ϕ̂ :
1

a
Z→ 1

a+ b
Z, ψ̂ :

1

b
Z→ 1

a+ b
Z, σ :

1

a+ b
Z→ Z

such that
(1)

{
ϕ̂
(
1
a Z
)
, ψ̂
(
1
b Z
)}

forms a partition of 1
a+b Z,

(2) there exists M̂ > 0 such that for all j ∈ Z,
∣∣ϕ̂
(
j
a

)
− j

a

∣∣,∣∣ψ̂
(
j
b

)
−
(
j
b − 1

2b

)∣∣ and
∣∣σ
(

j
a+b

)
− j

a+b

∣∣ are bounded by
M̂ , and

(3) there exists R̂ > 0 such that

sup
m∈Z

∣∣∣∣
1

R̂

∑

k
a∈[mR̂,(m+1)R̂)

ϕ̂

(
k

a

)
− k

a

∣∣∣∣ < δ,

sup
m∈Z

∣∣∣∣
1

R̂

∑

k
b+

1
2b

∈[mR̂,(m+1)R̂)

ψ̂

(
k

b

)
−
(
k

b
+

1

2b

)∣∣∣∣ < δ,

and

sup
m∈Z

∣∣∣∣
1

R̂

∑

k
a+b∈[mR̂,(m+1)R̂)

σ

(
k

a+ b

)
− k

a+ b

)∣∣∣∣ < ε.

Then there exist injective maps

ϕ :
1

a
Z→ 1

a+ b
Z, ψ :

1

b
Z→ 1

a+ b
Z

and R > 0 such that
(4)

{
ϕ
(
1
a Z
)
, ψ
(
1
b Z
)}

forms a partition of 1
a+b Z,

(5) for all j ∈ Z,
∣∣σ ◦ϕ

(
j
a

)
− j

a

∣∣ and
∣∣σ ◦ψ

(
j
b

)
−
(
j
b − 1

2b

)∣∣
are bounded by M̂ +R, and

2For the case of three intervals, it is shown in [9] using a different argument
that no modification of ϕ̂ and ψ̂ is required. However, Theorem 4.1 is required
for n > 3.



(6) for all m ∈ Z,
∣∣∣∣

1

R

∑

k
b∈[mR,(m+1)R)

σ ◦ ϕ
(
k

a

)
− k

a

∣∣∣∣ < ε+ 3δ,

∣∣∣∣
1

R

∑

k
b+

1
2b

∈[mR,(m+1)R)

σ ◦ ψ
(
k

b

)
−
(
k

b
+

1

2b

)∣∣∣∣ < ε+ 3δ.

In order to complete the proof in this case we simply choose
δ > 0 so that ε+ 3δ < 1

4 .

V. GENERALIZATION TO n AND INFINITELY MANY
INTERVALS

Repetition of the argument in Section IV allows us to
successively split the interval [0, 1] in such a way that the
corresponding Riesz basis for that interval also splits. For
example, given the partition 0 = a0 < a1 < · · · < an = 1 of
[0, 1], with Riesz basis E(Z), we can at the first stage split it
into [0, 1] = [0, an−1]∪ [an−1, 1] thereby obtaining subsets Λn
and Γn of Z such that E(Λn) is a Riesz basis for L2[an−1, 1]
and such that E(Γn) is a Riesz basis for L2[0, an−1]. At the
next step, split [0, an−1] into [0, an−2] ∪ [an−2, an−1] and
correspondingly split Γn into Λn−1 and Γn−1 each with the
appropriate Riesz basis property. Continuing in this fashion
gives Theorem 1.1 where we at the end take Λ1 = Γ1. By
choosing ε = 1

8(3(n−2)+1 and δ = ε at each step we guarantee
that at each step the appropriate Avdonin bound is less than
1
4 .

Modifying the order in which the interval is split gives us
Theorem 1.2 as follows. Given [α, β] ⊆ [0, 1] with partition
α = a0 < a1 < · · · < an−1 < an = β, we consider the
corresponding partition of [0, 1] given by

0 = b0 < b1 = α < b2 = a1 < · · ·
< bn = an−1 < bn+1 = β < bn+2 = 1.

At the first step, split [0, 1] into [0, 1] = [0, β] ∪ [β, 1], and
Z into Γn+1 and Λn+1, at the second step split [0, β] into
[0, β] = [0, α]∪[α, β], and Γn+1 into Λ0 and Γ0. In subsequent
steps, split [α, β] as desired obtaining sets Λ1, Λ2, . . . , Λn as
required by the theorem.

There is no impediment to continuing to split [0, 1] in-
definitely. By choosing at the kth step εk = δk so that
ε1 + 3

∑∞
k=2 εk <

1
4 we can guarantee that at each step the

Avdonin bound is sufficiently small. Letting {ak}k∈Z be as
in Theorem 1.3, we may at the first step split [0, 1] into into
[0, a1]∪[a1, 1], and Z into Λ1∪Γ1, [a1, 1] into [a1, a2]∪[a2, 1]
and Γ1 into Λ2 ∪ Γ2, and so forth. By choosing εk = δk so
that ε1 +3

∑∞
k=2 εk <

1
4 we can guarantee that at the kth step

the Avdonin bound is sufficiently small that Theorem 1.3(1)
and (3) hold. Theorem 1.3(2) follows from Theorem 3.1.
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Fig. 1. Illustration of Theorem 1.1 with n = 5. In the initial step (fifth to
fourth row) we use Theorem 3.2 to construct mappings ϕ4 : 1

a4
Z→ Z and

ψ̂k : 1
1−a4

Z→ Z whose ranges partition Z into Γ4 and Λ4 and where E(Λ4)

and E(Γ4) are Riesz bases for L2[a4, 1] and L2[0, a4] respectively. At the
next step (fourth to third row) we construct mappings ϕ̂3 : 1

a3
Z→ 1

a4
Z and

ψ̂3 : 1
a4−a3

Z→ 1
a4

Z whose ranges partition 1
a4

Z. Taking σ3 = ϕ4 we can
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