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Abstract—We study traces of certain subspaces of

shearlet coorbit spaces on lines in R2 which extends

the results for horizontal and vertical lines from [2].

I. INTRODUCTION

In recent years shearlets have been shown to be

efficient extractors of the directional information

present in a signal. This makes them well-suited for

various applications like [11], [13]. Moreover, quite

surprisingly, the shearlet transform has the outstand-

ing property to stem from a square integrable group

representation [1]. This remarkable fact provides the

opportunity to design associated canonical smooth-

ness spaces, so-called shearlet coorbit spaces [3], [5]

by applying the general coorbit theory derived by

Feichtinger and Gröchenig [8], [9]. To understand

the structure of shearlet coorbit spaces and in view

of possible applications it is desirable to know how

these new spaces behave under trace operations. In

[4], embedding theorems into Besov spaces were

employed to establish embedding relations of traces

of certain subspaces of shearlet coorbit spaces on the

boundary of smooth domains in Rd with d = 2, 3.

In this paper, we follow another approach. We

directly extend the trace results for hyperplanes from

[2] to arbitrary lines in R2 using the characterization

of homogeneous Besov spaces by K-atoms.

II. PRELIMINARY

In this section, we recall basic facts from shearlet

coorbit theory [2], [5]. For a ∈ R∗ := R \ {0} and
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s ∈ R, let

Aa :=

a 0

0 sgn(a)
√
|a|

 and Ss :=

1 s

0 1

 ,
be the parabolic scaling matrix and the shear ma-

trix. The shearlet group S is defined to be the set

R∗ × R× R2 endowed with the group operation

(a, s, t)(a′, s′, t′) = (aa′, s+ s′
√
|a|, t+ SsAat

′).

Its left-invariant Haar measure is given by µS =

|a|−3 da ds dt. The mapping π is defined by

π(a, s, t)ψ(x) := |a|− 3
4ψ(A−1a S−1s (x−t)) is a uni-

tary representation of S. It is also square integrable,

i.e., irreducible and there exists a nontrivial shearlet

ψ ∈ L2(R2) fulfilling the admissibility condition∫
S
|〈f, π(a, s, t)ψ〉|2 dµS(a, s, t) <∞.

For a shearlet ψ the transform SHψ : L2(R2) →

L2(S) defined by

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉,

is called continuous shearlet transform.

Let w be a real-valued, positive, continuous

and submultiplicative weight on S which fulfills

in addition all the coorbit-theory conditions as

stated in [12, Section 2.2]. Consider Lp,w(S) :=

{F measurable : Fw ∈ Lp(S)}, p ∈ [1,∞] with

the norm ‖F‖Lp,w :=
(∫

S |F (g)w(g)|
p dµS(g)

)1/p
.

For a vector ψ(6= 0) contained in {ψ ∈ L2(R2) :

SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w(S)}, we introduce

the space H1,w := {f ∈ L2(R2) : SHψ(f) =

〈f, π(·)ψ〉 ∈ L1,w(S)}, with norm ‖f‖H1,w :=

‖SHψ(f)‖L1,w(S) and its anti-dual H∼1,w, the space

of all continuous conjugate-linear functionals on



H1,w. The following sesquilinear form on H∼1,w ×

H1,w is well-defined:

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼
1,w×H1,w .

We are interested in the special weights

m(a, s, t) = m(a) := |a|−r, r ≥ 0,

where m be a w-moderate weight on S which

means m(xyz) ≤ w(x)m(y)w(z) for all x, y, z ∈ S

and use the abbreviation Lp,r(S) := Lp,m(S). The

Banach spaces SCp,r := {f ∈ H∼1,w : SHψ(f) ∈

Lp,r(S)}, ‖f‖SCp,r := ‖SHψ(f)‖Lp,r(S) are called

shearlet coorbit spaces. A (countable) family X =

{gi := (ai, si, ti) : i ∈ I} in S is said to be U -dense

if
⋃
i∈I giU = S, and separated if for some compact

neighborhood Q of e = (1, 0, 0) ∈ R∗ × R × R2

we have giQ ∩ gjQ = ∅, i 6= j, and relatively

separated if X is a finite union of separated sets.

Based on U -dense and relatively separated sets

the existence of atomic decompositions of shearlet

coorbit spaces is ensured [3], [7]. It was shown in

[2] that for a neighborhood of the identity U ⊃

[α−
1
2 , α

1
2 )× [−β2 ,

β
2 )× [− τ2 ,

τ
2 )

2, α > 1, β, τ > 0,

the set X :=
{
(εα−j , βα−

j
2 k, S

βα− j
2 k
Aα−jτ l) :

j ∈ Z, k ∈ Z, l ∈ Z2, ε ∈ {−1, 1}
}

is U -dense and

relatively separated. Without loss of generality, we

can restrict our attention to the ε = +1 and β = τ =

1. For a := α−j , s := α−
j
2 k and t := S

α− j
2 k
Aα−j l

we use the abbreviation ψj,k,l := π(a, s, t)ψ.

Every function f ∈ SCp,r can be written as

f(x) =
∑
j∈Z

∑
k∈Z

∑
l∈Z2

c(j, k, l)ψj,k,l(x) =
∑
j,k,l

c(j, k, l)α
3
4 jψ(αjx1 − α

j
2 kx2 − l1, αj/2x2 − l2).

For fixed ψ ∈ Bw as defined in [3], we denote by

SCCp,r the closed subspace of SCp,r consisting of

functions related to cone-adapted shearlets:

f(x) =
∑
j∈Z

∑
|k|≤α

j
2

∑
l∈Z2

c(j, k, l)ψj,k,l(x),

i.e. if T : SCp,r → `p,m is the linear, continuous

operator mapping f 7→ {cj,k,l}, then SCCp,r is

the pre-image of T of the closed set {cj,k,l : j ∈

Z, |k| ≤ α
j
2 , l ∈ Z2}.

Finally, we need the characterization of homoge-

neous Besov spaces Bσp,q from [10]. For α > 1,

D > 1 and K ∈ N0, a K times differentiable

function a on Rd is called a K-atom if the following

two conditions are fulfilled:

A1) supp a ⊂ DQj,m(Rd) for some m ∈ Rd,

where DQj,m(Rd) denotes the cube in Rd

centered at α−jm with sides parallel to the

coordinate axes and side length 2Dα−j .

A2) |Dγa(x)| ≤ cα|γ|j for |γ| ≤ K.

Now the homogeneous Besov spaces can be char-

acterized as follows.

Theorem 2.1: Let D > 1 and K ∈ N0 with

K ≥ 1 + bσc be fixed. Let 1 ≤ p ≤ ∞. Then

f ∈ Bσp,q if and only if it can be represented 1 as

f(x) =
∑
j∈Z

∑
l∈Zd

λ(j, l)aj,l(x), (1)

where the aj,l are K-atoms with supp aj,l ⊂

DQj,l(Rd). And

‖f‖Bσp,q ∼ inf
(∑
j∈Z

αj(σ−
d
p )q
( ∑
l∈Zd
|λ(j, l)|p

) q
p

) 1
q

where the infimum is taken over all admissible

representations (1).

III. TRACES ON LINES

In this section we prove a trace theorem on

general lines. Let L(x) := (x, `(x)), x ∈ R be a line

in R2 not coinciding with the horizontal and vertical

axes, where mapping `(x) is defined by `(x) = ax,

where a ∈ R>0. We define Besov spaces on the line

Bσ1
p,p(L) as

f ∈ Bσ1
p,p(L) if and only if f(x, `(x)) ∈ Bσ1

p,p(R2).

(2)

1 In the sense of distributions, a-posteriori implying norm

convergence for p < ∞.



Theorem 3.1: Let `(x) := ax with slope a ∈

R>0 and let TrL f denote the restriction of f to L,

i.e., TrL f(x) := f(x, ax). Then TrL(SCCp,r) ⊂

Bσ1
p,p(L) + Bσ2

p,p(L) holds true, where σi, i = 1, 2,

have to fulfill

σ1+bσ1c ≤ 2r− 9

2
+

3

p
, and σ2 ≤ 2r− 5

2
+

2

p
.

Proof: The proof is performed by first of all con-

sidering a subspace of the Schwartz functions which

is dense in the shearlet coorbit spaces, see [6] for

details. In this space, point evaluations are clearly

well-defined. Then the result follows by continuous

extension arguments. We can write f ∈ SCCp,r in

the form

f(x, y) =
∑
j∈Z

∑
|k|≤αj/2

∑
l∈Z2

c(j, k, l)α
3
4 j

ψ(αjx− αj/2ky − l1, αj/2y − l2).

We split f as f1 + f2, where

f1(x, y) =
∑
j≥0

∑
|k|≤αj/2

∑
l∈Z2

c(j, k, l)α
3
4 j

ψ(αjx− αj/2ky − l1, αj/2y − l2),

f2(x, y) =
∑
j<0

∑
l∈Z2

c(j, 0, l)α
3
4 j

ψ(αjx− l1, αj/2y − l2).

By [6, Theorem 3.2], we can choose ψ compactly

supported in [−D,D] × [−D,D] for some D > 1.

Further, ψ can be normalized such that the partial

derivatives (γ1, γ2) of order γ = γ1 + γ2 with 0 ≤

γ ≤ K := max{K1,K2} are not larger than 1,

where K1 := 1 + bσ1c, K2 := 1 + bσ2c. Then we

obtain

TrL f(x) = f(x, ax)

=
∑
j∈Z

∑
|k|≤αj/2

∑
l∈Z2

c(j, k, l)α
3
4 j

ψ(αjx− αj/2kax− l1, αj/2ax− l2).

The support assumptions on ψ and a > 0 shows that

if 0 6= ψ(αjx− αj/2kax− l1, αj/2ax− l2), then

α−j/2a−1(l2 −D) ≤ x ≤ α−j/2a−1(l2 +D)

and

(αj/2a−1 − k)l2 − (αj/2a−1 + |k|+ 1)D ≤ l1

≤ (αj/2a−1 − k)l2 + (αj/2a−1 + |k|+ 1)D.

Let Ik,l2,j := {r ∈ Z : |r − (αj/2a−1 − k)l2| ≤

D(1 + |k| + αj/2a−1)} and Jl2,j := {r ∈ Z : |r −

αj/2a−1l2| ≤ D(1+αj/2a−1)}. Now we can write

TrL f as

TrL f(x) =
∑
j≥0

∑
l2∈Z

λ(j, l2)aj,l2(x)

+
∑
j<0

∑
l2∈Z

λ(j, l2)aj,l2(x)

= TrL f1(x) + TrL f2(x),

where for j ≥ 0,

λ(j, l2) := α
3
4 jα

j
2K1

∑
|k|≤αj/2

∑
l1∈Ik,l2,j

| c(j, k, l1, l2) |

we set aj,l2(x) := 0 if λ(j, l2) = 0 and otherwise

aj,l2(x) := λ(j, l2)
−1α

3
4 j∑

|k|≤αj/2

∑
l1∈Ik,l2,j

c(j, k, l1, l2)

ψ(αjx− αj/2kax− l1, αj/2ax− l2).

For j < 0 we use

λ(j, l2) := α
3
4 j

∑
l1∈Jl2,j

| c(j, 0, l1, l2) |

and we set aj,l2(x) := 0 if λ(j, l2) = 0 and

otherwise

aj,l2(x) := λ(j, l2)
−1α

3
4 j

∑
l1∈Jl2,j

c(j, 0, l1, l2)

ψ(αjx− l1, αj/2ax− l2).

Since the support of ψ is in [−D,D] × [−D,D],

we have for h(x) := ψ(αjx − αj/2kax −

l1, α
j/2ax − l2) that supph ⊆ [α−j/2a−1l2 −

α−j/2a−1D,α−j/2a−1l2 +α−j/2a−1D] and there-

fore supp aj,l2 ⊆ [α−j/2a−1l2 − α−j/2a−1D,



α−j/2a−1l2+α
−j/2a−1D]. Note that we have only

involved the support condition for the second com-

ponent of ψ; but those for the first component does

not further reduce the size of the possible support of

aj,l2 . We show that the aj,l2 are atoms with respect

to the scaling with α1/2. For j ≥ 0 and |k| ≤ αj/2

we have |Dγh(x)| ≤ (2a + 1)γ/2αjγ . Hence,

for γ ≤ K1, we get α−
j
2K1 |Dγh(x)| ≤ cα

j
2γ ,

c := (2a + 1)
K1
2 and then |Dγaj,l2(x)| ≤ cα

j
2γ .

Thus aj,l2 are K1 atoms on L. We have

‖TrL f1‖Bσ1p,p ≤
(∑
j≥0

α
j
2 (σ1− 1

p+
3
2+K1)p

∑
l2∈Z

( ∑
|k|≤αj/2

∑
l1∈Ik,l2,j

| c(j, k, l1, l2) |
)p) 1

p

.

Now we use the inequality
( N∑
i=1

|zi|
)p ≤

Np−1
N∑
i=1

|zi|p together with the fact that Ik,l2,j

contains atmost cαj/2 elements and that there are

atmost cαj/2 integers with absolute value smaller

or equal than αj/2. We obtain

‖TrL f1‖Bσ1p,p .
(∑
j≥0

α
j
2 (σ1− 1

p+
3
2+K1)pαj(p−1)

∑
|k|≤αj/2

∑
l∈Z2

| c(j, k, l) |p
) 1
p

.
(∑
j∈Z

αjpr
∑
k∈Z

∑
l∈Z2

| c(j, k, l) |p
) 1
p

. ‖f‖SCp,r .

with r ≥ 1
2 (σ1 + bσ1c+

9
2 −

3
p ).

For j < 0 we have αj ≤ αj/2 such that

|Dγh(x)| ≤ cα
j
2γ which holds also true for

Dγaj,l2 . Therefore aj,l2 are K atoms on L. Now

we obtain similarly as above by regarding that Jl2,j

has cαj/2 elements

‖TrL f2‖Bσ2p,p ≤
(∑
j∈Z

α
j
2 (σ2− 1

p )p
∑
l2∈Z
| λ(j, l2) |p

) 1
p

.
(∑
j<0

α
j
2 (σ2− 1

p+
3
2 )pα

j
2 (p−1)

∑
l∈Z2

| c(j, 0, l) |p
) 1
p

.
(∑
j∈Z

αjpr
∑
k∈Z

∑
l∈Z2

| c(j, k, l) |p
) 1
p

. ‖f‖SCp,r

with r ≥ 1
2 (σ2 +

5
2 −

2
p ). This finishes the proof.
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