A Trace Result of Shearlet Coorbit Spaces on Lines

S. Dahlke, Q. Jahan, G. Steidl

Abstract-We study traces of certain subspaces of
shearlet coorbit spaces on lines in \mathbb{R}^{2} which extends the results for horizontal and vertical lines from [2].

I. Introduction

In recent years shearlets have been shown to be efficient extractors of the directional information present in a signal. This makes them well-suited for various applications like [11], [13]. Moreover, quite surprisingly, the shearlet transform has the outstanding property to stem from a square integrable group representation [1]. This remarkable fact provides the opportunity to design associated canonical smoothness spaces, so-called shearlet coorbit spaces [3], [5] by applying the general coorbit theory derived by Feichtinger and Gröchenig [8], [9]. To understand the structure of shearlet coorbit spaces and in view of possible applications it is desirable to know how these new spaces behave under trace operations. In [4], embedding theorems into Besov spaces were employed to establish embedding relations of traces of certain subspaces of shearlet coorbit spaces on the boundary of smooth domains in \mathbb{R}^{d} with $d=2,3$.

In this paper, we follow another approach. We directly extend the trace results for hyperplanes from [2] to arbitrary lines in \mathbb{R}^{2} using the characterization of homogeneous Besov spaces by K-atoms.

II. Preliminary

In this section, we recall basic facts from shearlet coorbit theory [2], [5]. For $a \in \mathbb{R}^{*}:=\mathbb{R} \backslash\{0\}$ and
S. Dahlke: Philipps-Universität Marburg, Germany.
Q. Jahan: Indian Institute of Technology Mandi, India.
G. Steidl: Technische Universität Kaiserslautern, Germany.
$s \in \mathbb{R}$, let
$A_{a}:=\left[\begin{array}{cc}a & 0 \\ 0 & \operatorname{sgn}(a) \sqrt{|a|}\end{array}\right]$ and $S_{s}:=\left[\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right]$,
be the parabolic scaling matrix and the shear matrix. The shearlet group \mathbb{S} is defined to be the set $\mathbb{R}^{*} \times \mathbb{R} \times \mathbb{R}^{2}$ endowed with the group operation

$$
(a, s, t)\left(a^{\prime}, s^{\prime}, t^{\prime}\right)=\left(a a^{\prime}, s+s^{\prime} \sqrt{|a|}, t+S_{s} A_{a} t^{\prime}\right)
$$

Its left-invariant Haar measure is given by $\mu_{\mathbb{S}}=$ $|a|^{-3} d a d s d t$. The mapping π is defined by $\pi(a, s, t) \psi(x):=|a|^{-\frac{3}{4}} \psi\left(A_{a}^{-1} S_{s}^{-1}(x-t)\right)$ is a unitary representation of \mathbb{S}. It is also square integrable, i.e., irreducible and there exists a nontrivial shearlet $\psi \in L_{2}\left(\mathbb{R}^{2}\right)$ fulfilling the admissibility condition

$$
\int_{\mathbb{S}}|\langle f, \pi(a, s, t) \psi\rangle|^{2} d \mu_{\mathbb{S}}(a, s, t)<\infty
$$

For a shearlet ψ the transform $\mathcal{S H}_{\psi}: L_{2}\left(\mathbb{R}^{2}\right) \rightarrow$ $L_{2}(\mathbb{S})$ defined by

$$
\mathcal{S H}_{\psi}(f)(a, s, t):=\langle f, \pi(a, s, t) \psi\rangle
$$

is called continuous shearlet transform.
Let w be a real-valued, positive, continuous and submultiplicative weight on \mathbb{S} which fulfills in addition all the coorbit-theory conditions as stated in [12, Section 2.2]. Consider $L_{p, w}(\mathbb{S}):=$ $\left\{F\right.$ measurable : $\left.F w \in L_{p}(\mathbb{S})\right\}, p \in[1, \infty]$ with the norm $\|F\|_{L_{p, w}}:=\left(\int_{\mathbb{S}}|F(g) w(g)|^{p} d \mu_{\mathbb{S}}(g)\right)^{1 / p}$. For a vector $\psi(\neq 0)$ contained in $\left\{\psi \in L_{2}\left(\mathbb{R}^{2}\right)\right.$: $\left.\mathcal{S H}_{\psi}(\psi)=\langle\psi, \pi(\cdot) \psi\rangle \in L_{1, w}(\mathbb{S})\right\}$, we introduce the space $\mathcal{H}_{1, w}:=\left\{f \in L_{2}\left(\mathbb{R}^{2}\right): \mathcal{S H}_{\psi}(f)=\right.$ $\left.\langle f, \pi(\cdot) \psi\rangle \in L_{1, w}(\mathbb{S})\right\}$, with norm $\|f\|_{\mathcal{H}_{1, w}}:=$ $\left\|\mathcal{S H}_{\psi}(f)\right\|_{L_{1, w}(\mathbb{S})}$ and its anti-dual $\mathcal{H}_{1, w}^{\sim}$, the space of all continuous conjugate-linear functionals on
$\mathcal{H}_{1, w}$. The following sesquilinear form on $\mathcal{H}_{1, w}^{\sim} \times$ $\mathcal{H}_{1, w}$ is well-defined:

$$
\mathcal{S H}_{\psi}(f)(a, s, t):=\langle f, \pi(a, s, t) \psi\rangle_{\mathcal{H}_{1, w}} \times \mathcal{H}_{1, w} .
$$

We are interested in the special weights

$$
m(a, s, t)=m(a):=|a|^{-r}, \quad r \geq 0
$$

where m be a w-moderate weight on \mathbb{S} which means $m(x y z) \leq w(x) m(y) w(z)$ for all $x, y, z \in \mathbb{S}$ and use the abbreviation $L_{p, r}(\mathbb{S}):=L_{p, m}(\mathbb{S})$. The Banach spaces $\mathcal{S C}_{p, r}:=\left\{f \in \mathcal{H}_{1, w}^{\sim}: \mathcal{S H}_{\psi}(f) \in\right.$ $\left.L_{p, r}(\mathbb{S})\right\},\|f\|_{\mathcal{S C}_{p, r}}:=\left\|\mathcal{S H}_{\psi}(f)\right\|_{L_{p, r}(\mathbb{S})}$ are called shearlet coorbit spaces. A (countable) family $X=$ $\left\{g_{i}:=\left(a_{i}, s_{i}, t_{i}\right): i \in \mathcal{I}\right\}$ in \mathbb{S} is said to be U-dense if $\bigcup_{i \in \mathcal{I}} g_{i} U=\mathbb{S}$, and separated if for some compact neighborhood Q of $e=(1,0,0) \in \mathbb{R}^{*} \times \mathbb{R} \times \mathbb{R}^{2}$ we have $g_{i} Q \cap g_{j} Q=\emptyset, i \neq j$, and relatively separated if X is a finite union of separated sets. Based on U-dense and relatively separated sets the existence of atomic decompositions of shearlet coorbit spaces is ensured [3], [7]. It was shown in [2] that for a neighborhood of the identity $U \supset$ $\left[\alpha^{-\frac{1}{2}}, \alpha^{\frac{1}{2}}\right) \times\left[-\frac{\beta}{2}, \frac{\beta}{2}\right) \times\left[-\frac{\tau}{2}, \frac{\tau}{2}\right)^{2}, \alpha>1, \beta, \tau>0$, the set $X:=\left\{\left(\varepsilon \alpha^{-j}, \beta \alpha^{-\frac{j}{2}} k, S_{\beta \alpha^{-\frac{j}{2}}}{ }_{k} A_{\alpha^{-j}} \tau l\right)\right.$: $\left.j \in \mathbb{Z}, k \in \mathbb{Z}, l \in \mathbb{Z}^{2}, \varepsilon \in\{-1,1\}\right\}$ is U-dense and relatively separated. Without loss of generality, we can restrict our attention to the $\varepsilon=+1$ and $\beta=\tau=$

1. For $a:=\alpha^{-j}, s:=\alpha^{-\frac{j}{2}} k$ and $t:=S_{\alpha^{-\frac{j}{2}}} A_{k} A_{\alpha^{-j}} l$ we use the abbreviation $\psi_{j, k, l}:=\pi(a, s, t) \psi$.

Every function $f \in \mathcal{S C}_{p, r}$ can be written as

$$
\begin{aligned}
& f(x)=\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}^{2}} c(j, k, l) \psi_{j, k, l}(x)=\sum_{j, k, l} \\
& c(j, k, l) \alpha^{\frac{3}{4} j} \psi\left(\alpha^{j} x_{1}-\alpha^{\frac{j}{2}} k x_{2}-l_{1}, \alpha^{j / 2} x_{2}-l_{2}\right) .
\end{aligned}
$$

For fixed $\psi \in B_{w}$ as defined in [3], we denote by $\mathcal{S C C}_{p, r}$ the closed subspace of $\mathcal{S C}_{p, r}$ consisting of functions related to cone-adapted shearlets:

$$
f(x)=\sum_{j \in \mathbb{Z}} \sum_{|k| \leq \alpha^{\frac{j}{2}}} \sum_{l \in \mathbb{Z}^{2}} c(j, k, l) \psi_{j, k, l}(x),
$$

i.e. if $T: \mathcal{S C}_{p, r} \rightarrow \ell_{p, m}$ is the linear, continuous operator mapping $f \mapsto\left\{c_{j, k, l}\right\}$, then $\mathcal{S C C}_{p, r}$ is the pre-image of T of the closed set $\left\{c_{j, k, l}: j \in\right.$ $\left.\mathbb{Z},|k| \leq \alpha^{\frac{j}{2}}, l \in \mathbb{Z}^{2}\right\}$.

Finally, we need the characterization of homogeneous Besov spaces $B_{p, q}^{\sigma}$ from [10]. For $\alpha>1$, $D>1$ and $K \in \mathbb{N}_{0}$, a K times differentiable function a on \mathbb{R}^{d} is called a K-atom if the following two conditions are fulfilled:

A1) $\operatorname{supp} a \subset D Q_{j, m}\left(\mathbb{R}^{d}\right)$ for some $m \in \mathbb{R}^{d}$, where $D Q_{j, m}\left(\mathbb{R}^{d}\right)$ denotes the cube in \mathbb{R}^{d} centered at $\alpha^{-j} m$ with sides parallel to the coordinate axes and side length $2 D \alpha^{-j}$.

A2) $\left|D^{\gamma} a(x)\right| \leq c \alpha^{|\gamma| j}$ for $|\gamma| \leq K$.
Now the homogeneous Besov spaces can be characterized as follows.

Theorem 2.1: Let $D>1$ and $K \in \mathbb{N}_{0}$ with $K \geq 1+\lfloor\sigma\rfloor$ be fixed. Let $1 \leq p \leq \infty$. Then $f \in B_{p, q}^{\sigma}$ if and only if it can be represented ${ }^{1}$ as

$$
\begin{equation*}
f(x)=\sum_{j \in \mathbb{Z}} \sum_{l \in \mathbb{Z}^{d}} \lambda(j, l) a_{j, l}(x) \tag{1}
\end{equation*}
$$

where the $a_{j, l}$ are K-atoms with $\operatorname{supp} a_{j, l} \subset$ $D Q_{j, l}\left(\mathbb{R}^{d}\right)$. And

$$
\|f\|_{B_{p, q}^{\sigma}} \sim \inf \left(\sum_{j \in \mathbb{Z}} \alpha^{j\left(\sigma-\frac{d}{p}\right) q}\left(\sum_{l \in \mathbb{Z}^{d}}|\lambda(j, l)|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}
$$

where the infimum is taken over all admissible representations (1).

III. Traces on lines

In this section we prove a trace theorem on general lines. Let $L(x):=(x, \ell(x)), x \in \mathbb{R}$ be a line in \mathbb{R}^{2} not coinciding with the horizontal and vertical axes, where mapping $\ell(x)$ is defined by $\ell(x)=a x$, where $a \in \mathbb{R}_{>0}$. We define Besov spaces on the line $B_{p, p}^{\sigma_{1}}(L)$ as
$f \in B_{p, p}^{\sigma_{1}}(L) \quad$ if and only if $\quad f(x, \ell(x)) \in B_{p, p}^{\sigma_{1}}\left(\mathbb{R}^{2}\right)$.

[^0] convergence for $p<\infty$.

Theorem 3.1: Let $\ell(x):=a x$ with slope $a \in$ $\mathbb{R}_{>0}$ and let $\operatorname{Tr}_{L} f$ denote the restriction of f to L, i.e., $\operatorname{Tr}_{L} f(x):=f(x, a x)$. Then $\operatorname{Tr}_{L}\left(\mathcal{S C C}_{p, r}\right) \subset$ $B_{p, p}^{\sigma_{1}}(L)+B_{p, p}^{\sigma_{2}}(L)$ holds true, where $\sigma_{i}, i=1,2$, have to fulfill
$\sigma_{1}+\left\lfloor\sigma_{1}\right\rfloor \leq 2 r-\frac{9}{2}+\frac{3}{p}, \quad$ and $\quad \sigma_{2} \leq 2 r-\frac{5}{2}+\frac{2}{p}$.

Proof: The proof is performed by first of all considering a subspace of the Schwartz functions which is dense in the shearlet coorbit spaces, see [6] for details. In this space, point evaluations are clearly well-defined. Then the result follows by continuous extension arguments. We can write $f \in \mathcal{S C C}_{p, r}$ in the form

$$
\begin{aligned}
f(x, y) & =\sum_{j \in \mathbb{Z}} \sum_{|k| \leq \alpha^{j / 2}} \sum_{l \in \mathbb{Z}^{2}} c(j, k, l) \alpha^{\frac{3}{4} j} \\
& \psi\left(\alpha^{j} x-\alpha^{j / 2} k y-l_{1}, \alpha^{j / 2} y-l_{2}\right)
\end{aligned}
$$

We split f as $f_{1}+f_{2}$, where

$$
\begin{aligned}
f_{1}(x, y) & =\sum_{j \geq 0} \sum_{|k| \leq \alpha^{j / 2}} \sum_{l \in \mathbb{Z}^{2}} c(j, k, l) \alpha^{\frac{3}{4} j} \\
& \psi\left(\alpha^{j} x-\alpha^{j / 2} k y-l_{1}, \alpha^{j / 2} y-l_{2}\right), \\
f_{2}(x, y) & =\sum_{j<0} \sum_{l \in \mathbb{Z}^{2}} c(j, 0, l) \alpha^{\frac{3}{4} j} \\
& \psi\left(\alpha^{j} x-l_{1}, \alpha^{j / 2} y-l_{2}\right) .
\end{aligned}
$$

By [6, Theorem 3.2], we can choose ψ compactly supported in $[-D, D] \times[-D, D]$ for some $D>1$. Further, ψ can be normalized such that the partial derivatives $\left(\gamma_{1}, \gamma_{2}\right)$ of order $\gamma=\gamma_{1}+\gamma_{2}$ with $0 \leq$ $\gamma \leq K:=\max \left\{K_{1}, K_{2}\right\}$ are not larger than 1, where $K_{1}:=1+\left\lfloor\sigma_{1}\right\rfloor, K_{2}:=1+\left\lfloor\sigma_{2}\right\rfloor$. Then we obtain

$$
\begin{aligned}
& \operatorname{Tr}_{L} f(x)=f(x, a x) \\
& =\sum_{j \in \mathbb{Z}} \sum_{|k| \leq \alpha^{j / 2}} \sum_{l \in \mathbb{Z}^{2}} c(j, k, l) \alpha^{\frac{3}{4} j} \\
& \psi\left(\alpha^{j} x-\alpha^{j / 2} k a x-l_{1}, \alpha^{j / 2} a x-l_{2}\right) .
\end{aligned}
$$

The support assumptions on ψ and $a>0$ shows that if $0 \neq \psi\left(\alpha^{j} x-\alpha^{j / 2} k a x-l_{1}, \alpha^{j / 2} a x-l_{2}\right)$, then

$$
\alpha^{-j / 2} a^{-1}\left(l_{2}-D\right) \leq x \leq \alpha^{-j / 2} a^{-1}\left(l_{2}+D\right)
$$

and

$$
\begin{aligned}
& \left(\alpha^{j / 2} a^{-1}-k\right) l_{2}-\left(\alpha^{j / 2} a^{-1}+|k|+1\right) D \leq l_{1} \\
& \leq\left(\alpha^{j / 2} a^{-1}-k\right) l_{2}+\left(\alpha^{j / 2} a^{-1}+|k|+1\right) D
\end{aligned}
$$

Let $I_{k, l_{2}, j}:=\left\{r \in \mathbb{Z}:\left|r-\left(\alpha^{j / 2} a^{-1}-k\right) l_{2}\right| \leq\right.$ $\left.D\left(1+|k|+\alpha^{j / 2} a^{-1}\right)\right\}$ and $J_{l_{2}, j}:=\{r \in \mathbb{Z}: \mid r-$ $\left.\alpha^{j / 2} a^{-1} l_{2} \mid \leq D\left(1+\alpha^{j / 2} a^{-1}\right)\right\}$. Now we can write $\operatorname{Tr}_{L} f$ as

$$
\begin{aligned}
\operatorname{Tr}_{L} f(x)= & \sum_{j \geq 0} \sum_{l_{2} \in \mathbb{Z}} \lambda\left(j, l_{2}\right) a_{j, l_{2}}(x) \\
& +\sum_{j<0} \sum_{l_{2} \in \mathbb{Z}} \lambda\left(j, l_{2}\right) a_{j, l_{2}}(x) \\
= & \operatorname{Tr}_{L} f_{1}(x)+\operatorname{Tr}_{L} f_{2}(x)
\end{aligned}
$$

where for $j \geq 0$,
$\lambda\left(j, l_{2}\right):=\alpha^{\frac{3}{4} j} \alpha^{\frac{j}{2} K_{1}} \sum_{|k| \leq \alpha^{j / 2}} \sum_{l_{1} \in I_{k, l_{2}, j}}\left|c\left(j, k, l_{1}, l_{2}\right)\right|$
we set $a_{j, l_{2}}(x):=0$ if $\lambda\left(j, l_{2}\right)=0$ and otherwise

$$
\begin{aligned}
a_{j, l_{2}}(x) & :=\lambda\left(j, l_{2}\right)^{-1} \alpha^{\frac{3}{4} j} \\
& \sum_{|k| \leq \alpha^{j / 2}} \sum_{l_{1} \in I_{k, l_{2}, j}} c\left(j, k, l_{1}, l_{2}\right) \\
& \psi\left(\alpha^{j} x-\alpha^{j / 2} k a x-l_{1}, \alpha^{j / 2} a x-l_{2}\right)
\end{aligned}
$$

For $j<0$ we use

$$
\lambda\left(j, l_{2}\right):=\alpha^{\frac{3}{4} j} \sum_{l_{1} \in J_{l_{2}, j}}\left|c\left(j, 0, l_{1}, l_{2}\right)\right|
$$

and we set $a_{j, l_{2}}(x):=0$ if $\lambda\left(j, l_{2}\right)=0$ and otherwise

$$
\begin{aligned}
a_{j, l_{2}}(x):= & \lambda\left(j, l_{2}\right)^{-1} \alpha^{\frac{3}{4} j} \sum_{l_{1} \in J_{l_{2}, j}} c\left(j, 0, l_{1}, l_{2}\right) \\
& \psi\left(\alpha^{j} x-l_{1}, \alpha^{j / 2} a x-l_{2}\right) .
\end{aligned}
$$

Since the support of ψ is in $[-D, D] \times[-D, D]$, we have for $h(x):=\psi\left(\alpha^{j} x-\alpha^{j / 2} k a x-\right.$ $\left.l_{1}, \alpha^{j / 2} a x-l_{2}\right)$ that $\operatorname{supp} h \subseteq\left[\alpha^{-j / 2} a^{-1} l_{2}-\right.$ $\left.\alpha^{-j / 2} a^{-1} D, \alpha^{-j / 2} a^{-1} l_{2}+\alpha^{-j / 2} a^{-1} D\right]$ and therefore $\operatorname{supp} a_{j, l_{2}} \subseteq\left[\alpha^{-j / 2} a^{-1} l_{2}-\alpha^{-j / 2} a^{-1} D\right.$,
$\left.\alpha^{-j / 2} a^{-1} l_{2}+\alpha^{-j / 2} a^{-1} D\right]$. Note that we have only involved the support condition for the second component of ψ; but those for the first component does not further reduce the size of the possible support of $a_{j, l_{2}}$. We show that the $a_{j, l_{2}}$ are atoms with respect to the scaling with $\alpha^{1 / 2}$. For $j \geq 0$ and $|k| \leq \alpha^{j / 2}$ we have $\left|D^{\gamma} h(x)\right| \leq(2 a+1)^{\gamma / 2} \alpha^{j \gamma}$. Hence, for $\gamma \leq K_{1}$, we get $\alpha^{-\frac{j}{2} K_{1}}\left|D^{\gamma} h(x)\right| \leq c \alpha^{\frac{j}{2} \gamma}$, $c:=(2 a+1)^{\frac{K_{1}}{2}}$ and then $\left|D^{\gamma} a_{j, l_{2}}(x)\right| \leq c \alpha^{\frac{j}{2} \gamma}$. Thus $a_{j, l_{2}}$ are K_{1} atoms on L. We have

$$
\begin{aligned}
& \left\|\operatorname{Tr}_{L} f_{1}\right\|_{B_{p, p}^{\sigma_{1}}} \leq\left(\sum_{j \geq 0} \alpha^{\frac{j}{2}\left(\sigma_{1}-\frac{1}{p}+\frac{3}{2}+K_{1}\right) p}\right. \\
& \left.\sum_{l_{2} \in \mathbb{Z}}\left(\sum_{|k| \leq \alpha^{j / 2}} \sum_{l_{1} \in I_{k, l_{2}, j}}\left|c\left(j, k, l_{1}, l_{2}\right)\right|\right)^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

Now we use the inequality $\left(\sum_{i=1}^{N}\left|z_{i}\right|\right)^{p} \leq$ $N^{p-1} \sum_{i=1}^{N}\left|z_{i}\right|^{p}$ together with the fact that $I_{k, l_{2}, j}$ contains atmost $c \alpha^{j / 2}$ elements and that there are atmost $c \alpha^{j / 2}$ integers with absolute value smaller or equal than $\alpha^{j / 2}$. We obtain

$$
\begin{aligned}
& \left\|\operatorname{Tr}_{L} f_{1}\right\|_{B_{p, p}^{\sigma_{1}}} \lesssim\left(\sum_{j \geq 0} \alpha^{\frac{j}{2}\left(\sigma_{1}-\frac{1}{p}+\frac{3}{2}+K_{1}\right) p} \alpha^{j(p-1)}\right. \\
& \left.\sum_{|k| \leq \alpha^{j / 2}} \sum_{l \in \mathbb{Z}^{2}}|c(j, k, l)|^{p}\right)^{\frac{1}{p}} \\
& \lesssim\left(\sum_{j \in \mathbb{Z}} \alpha^{j p r} \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}^{2}}|c(j, k, l)|^{p}\right)^{\frac{1}{p}} \\
& \lesssim\|f\|_{\mathcal{S C}_{p, r}} .
\end{aligned}
$$

with $r \geq \frac{1}{2}\left(\sigma_{1}+\left\lfloor\sigma_{1}\right\rfloor+\frac{9}{2}-\frac{3}{p}\right)$.
For $j<0$ we have $\alpha^{j} \leq \alpha^{j / 2}$ such that $\left|D^{\gamma} h(x)\right| \leq c \alpha^{\frac{j}{2} \gamma}$ which holds also true for $D^{\gamma} a_{j, l_{2}}$. Therefore $a_{j, l_{2}}$ are K atoms on L. Now we obtain similarly as above by regarding that $J_{l_{2}, j}$ has $c \alpha^{j / 2}$ elements

$$
\begin{aligned}
& \left\|\operatorname{Tr}_{L} f_{2}\right\|_{B_{p, p}^{\sigma_{2}}} \leq\left(\sum_{j \in \mathbb{Z}} \alpha^{\frac{j}{2}\left(\sigma_{2}-\frac{1}{p}\right) p} \sum_{l_{2} \in \mathbb{Z}}\left|\lambda\left(j, l_{2}\right)\right|^{p}\right)^{\frac{1}{p}} \\
& \lesssim\left(\sum_{j<0} \alpha^{\frac{j}{2}\left(\sigma_{2}-\frac{1}{p}+\frac{3}{2}\right) p} \alpha^{\frac{j}{2}(p-1)} \sum_{l \in \mathbb{Z}^{2}}|c(j, 0, l)|^{p}\right)^{\frac{1}{p}} \\
& \lesssim\left(\sum_{j \in \mathbb{Z}} \alpha^{j p r} \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}^{2}}|c(j, k, l)|^{p}\right)^{\frac{1}{p}} \\
& \lesssim\|f\|_{\mathcal{S C}_{p, r}}
\end{aligned}
$$

with $r \geq \frac{1}{2}\left(\sigma_{2}+\frac{5}{2}-\frac{2}{p}\right)$. This finishes the proof.

REFERENCES

[1] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process., 6, 157-181 (2008).
[2] S. Dahlke, S. Häuser, G. Steidl, and G. Teschke, Shearlet coorbit spaces: traces and embeddings in higher dimensions. Monatsh. Math., 169(1), 15-23, (2013).
[3] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal., 27/2, 195-214 (2009).
[4] S. Dahlke, Q. Jahan, C. Schneider, G. Steidl, and G. Teschke, Traces of shearlet coorbit spaces on domains, Appl. Math. Lett., 91, 35-40, (2019).
[5] S. Dahlke, G. Steidl, and G. Teschke, The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. App. 16, 340-354 (2010).
[6] S. Dahlke, G. Steidl, and G. Teschke. Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings, J. Fourier Anal. App. 17(6), 1232-1255, (2011).
[7] H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Proc. Conf. "Function Spaces and Applications", Lund 1986, LNM 1302 (1988), 52-73.
[8] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition I, J. Funct. Anal. 86, 307-340 (1989).
[9] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition II, Monatsh. Math. 108, 129-148 (1989).
[10] M. Frazier and B. Jawerth. Decomposition of Besov spaces, Indiana Univ. Math. J., 34(4), 777-799, (1985).
[11] K. Guo, G. Kutyniok and D. Labate. Sparse multidimensional representations using anisotropic dilation and shear operators, Wavelets and splines: Athens 2005, 189-201, (2006).
[12] K. Gröchenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112, 1-42 (1991).
[13] G. Kutyniok and D. Labate. Shearlets: Multiscale Analysis for Multivariate Data, Birkhäuser, Boston, 2012.

[^0]: 1 In the sense of distributions, a-posteriori implying norm

