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Abstract—In this work, we study the sampling of piecewise smooth-

graph signals that exhibit an inhomogeneous level of smoothness over

the graph and are characterized by have abrupt, localized discontinuities

between smooth regions of the graph. We propose an extension to the

graph trend filtering framework under the sampling setting and present

an ADMM-algorithm to efficiently reconstruct piecewise-smooth graph

signals. Further, to alleviate the limitations of passive sampling in this

setting, we develop an active sampling strategy that incorporates feedback

to focus the sampling procedure near the boundary or discontinuities. We

then conduct experiments that exhibit the performance of our algorithm

on large complex graphs and validate the efficacy of our sampling

strategies.

Index Terms—sampling, piecewise smooth, graph signal processing,

graph trend filtering

I. INTRODUCTION

With the explosive growth of information and communication, data

is being generated at an unprecedented rate from various sources,

including multimedia, sensor networks, biological systems, social

networks, and physical infrastructure [1]. Research in graph signal

processing (GSP) aims to develop tools for processing such data

by providing a framework for the analysis of high-dimensional data

signals we refer to as graph signals defined on irregular graph

domains [2], [3], [4]. Research on the sampling and recovery of graph

signals has been prevalent in recent years [5], [6], [7], [8], [9].

The assumption that graph signals vary slowly or are smooth over

the graph is a natural one to make. However, in social networks,

within a given community or social circle, users’ profiles tend to

be homogeneous, while within a different social circle they will

be different, yet still homogeneous. Such signals are characterized

by large variation between regions or pieces and slow variation

within pieces. In this work, we study the sampling and reconstruction

of such piecewise-smooth graph signals that exhibit a spatially

inhomogeneous level of smoothness over regions of the graph and

have abrupt, localized discontinuities. This class of piecewise-smooth

signals is complementary to the class of smooth graph signals that

exhibit spatially homogeneous levels of smoothness over the graph.

The sampling of such smooth signals has been well studied in

previous work both within the field of graph signal processing as

well as in the context of Laplacian regularization.

In the context of semi-supervised classification on graphs, each

vertex represents one data point to which a label is associated

and a graph can be formed by connecting vertices with weights

corresponding to the affinity or distance between the data points in

some feature space. It is then natural to assume that the label signal

is piecewise-smooth on the graph. Since samples are often sparse or

expensive, designing efficient sampling and reconstruction tools for
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semi-supervised classification and active learning is notably valuable.

The graph trend filtering (GTF) framework [10], which applies total

variation denoising on graphs [11], is a particularly flexible and

attractive approach to process piecewise-smooth graph signals that

is based on minimizing the ℓ1 norm of discrete graph differences. In

this work, we present an extension to the GTF framework under the

sampling setting, that is, where we only partially observe the signal.

Most sampling strategies fall under the umbrellas of either (1)

passive sampling where there is no feedback and we simply sample

the space without any knowledge of key signal characteristics, or (2)

active sampling where we can incorporate feedback in a sequential

process. Unlike sampling smooth signals that have no discontinuities,

the localized nature of the discontinuities in piecewise-smooth signals

make the detection of these discontinuities inherently decoupled from

the global or neighborhood features of the graph signal. It then

follows that the passive sampling of piecewise-smooth graph signals

is a significantly harder or even futile task than the same for globally

smooth signals. For the latter, it is often sufficient to sample such that

we uniformly cover the space. Consequently, we propose studying the

active sampling of piecewise-smooth signals by designing algorithms

and strategies that incorporate feedback. Particularly, we develop

active sampling methods that can capitalize on the localized nature

of the boundary by focusing the sampling process in the estimated

vicinity of the boundary.

II. GRAPH SIGNAL PROCESSING AND PIECEWISE-SMOOTH

GRAPH SIGNALS

A. Graphs

We consider a weighted undirected graph G = (V, E ,A), where

V = {v1, . . . , vN} is the set of nodes, E = {e1, . . . , em} is the set

of edges, and A = [Aj,k] ∈ R
N×N is the graph shift operator [12],

or the weighted adjacency matrix. The edge set E represents the

connections of the undirected graph G, and the positive edge weight

Aj,k between nodes vj and vk measures the underlying relation

between the jth and the kth node, such as a similarity, a dependency,

or a communication pattern. Let a graph signal be defined as

β =
[
β1, β2, . . . , βN

]T ∈ R
n,

where βi denotes the signal coefficient at the ith node.

Let ∆ ∈ R
m×N be the oriented incidence matrix of G, where

each row corresponds to an edge. That is, if the edge ei = (j, k) ∈ E
connects the jth node to the kth node (j < k), the entries in the ith
row of ∆ is then given as

∆i,ℓ =






−
√

Aj,k, ℓ = j;√
Aj,k, ℓ = k;

0, otherwise

.



The entries of the signal ∆β = [
√

Aj,k(βk − βj)](j,k)∈E specifies

the weighted pairwise differences of the graph signal over each edge.

As a result, ∆ can be interpreted as a graph difference operator. In

graph signal processing, a signal is called globally smooth over a

graph G if ‖∆β‖22 =
∑

(j,k)∈E Aj,k(βk − βj)
2 is small.

B. Piecewise-Smooth Graph Signals

Fig. 1: From left to right, piecewise-constant (k=0), linear (k=1) and

quadratic signals (k=2) on a 20× 20 2-dimensional grid graph (N = 400)

In practice, the graph signal may not be necessarily smooth over

the entire graph, but only locally within different pieces of the graph.

To model inhomogeneous levels of smoothness over a graph, we say

that a graph signal β is piecewise-constant over a graph G if many

of the differences βk −βj are zero for (j, k) ∈ E . Consequently, the

difference signal ∆β is sparse and ‖∆β‖0 is small.

We can generalize this notion to characterize piecewise-kth order

polynomial signals on a graph, where the piecewise-constant case

corresponds to k = 0, by generalizing the notion of graph difference

operators. Specifically, we use the following recursive definition of

the kth order graph difference operator ∆(k+1) [10]. Let ∆(1) = ∆

for k = 0. For k ≥ 1, let

∆
(k+1) =

{
∆(1)T∆(k) ∈ R

N×N , odd k

∆(1)∆(k) ∈ R
m×N , even k

.

The signal β is said to be a piecewise-kth order polynomial

graph signal if ‖∆(k+1)β‖0 is small. To further illustrate, let us

consider the piecewise-linear graph signal, corresponding to k = 1,

as a signal whose value at a node can be linearly interpolated

from the weighted average of the values at neighboring nodes. It

is easy to see that this is the same as requiring the second-order

differences ∆T∆β to be sparse. Similarly, we say that a signal has

a piecewise-quadratic structure if the differences between the second-

order differences defined for piecewise-linear signals are mostly zero,

that is, if ∆∆T∆β is sparse. We illustrate examples of piecewise-

kth order polynomial graph signals for k = 0, 1, 2 on a 2-dimensional

grid graph in Fig 1.

C. Sampling

We consider the procedure of sampling and recovery as follows:

we sample M coefficients in a graph signal β ∈ R
N with Gaussian

noise to produce a noisy sampled signal y ∈ R
M (M < N), that is,

y = Ψβ + ǫ ≡ βM + ǫ, (1)

where ǫ ∼ N (0, σ2 IM×M ), and M = (M1, · · · ,MM ) denotes

the sampling set where Mi ∈ {1, · · · , N}. The sampling operator

Ψ is a linear mapping from R
N to R

M , defined as

Ψi,j =

{
1, j =Mi;
0, otherwise.

(2)

We then reconstruct β from y to get β̂ ∈ R
N .

Passive sampling refers to the setting where we are constrained

to strategies that are blind to any samples of the signal. That is, we

design strategies by considering only the underlying graph structure

and any modeling assumptions we have made. In contrast, active or

adaptive sampling strategies are able to choose samples in an online

fashion by allowing feedback: the decision of where to sample next

depends on all the observations made previously. While it’s obvious

that good active sampling strategies should never perform worse

than passive sampling strategies, we aim to develop active sampling

strategies that are able to achieve substantial gains in performance.

Under passive sampling, we can consider two different sampling

settings: random sampling where the sample indices are chosen from

from {1, · · · , N} independently and uniformly randomly; and ex-

perimentally designed sampling where the sample indices can be

chosen beforehand based on the graph structure. Since we do not a-

priori make any assumptions or have any information on the location

of the boundary or discontinuities of the piecewise-smooth graph

signal, we can show that experimentally designed sampling does not

outperform random sampling and in fact, can often be detrimental.

In other words, these discontinuities are fundamentally dissociated

from samples outside their locations on the graph unlike globally

smooth signals where key characteristics of the signal are spread out

over local neighborhoods and consequently some nodes can be more

informative than others. Consequently, we only consider uniform

random sampling for passive sampling. We note that previous work

that has studied the fundamental limits of passive and active sampling

on graphs for globally smooth signals, has shown that active sam-

pling does not fundamentally outperform passive sampling. However,

experimentally designed sampling outperforms random sampling for

irregular graphs where some nodes can be more informative than

others.

III. SAMPLING AND RECOVERY VIA GTF

Graph trend filtering (GTF) [10] is a flexible framework for

estimation on graphs that is adaptive to inhomogeneity in the level of

smoothness and localized characteristics of an observed signal across

nodes. The kth order GTF estimate is defined as:

β̂ = argminβ∈Rn

1

2
‖y − β‖22 + λ‖∆(k+1)

β‖1, (3)

which can be regarded as applying total variation or fused lasso

with the graph difference operator ∆(k+1) [11], [13]. The sparsity-

promoting properties of the ℓ1 norm have been well-studied [14].

Consequently, applying the ℓ1 penalty in GTF sets many of the graph

differences to zero while keeping a small fraction of nonzero values.

GTF is then adaptive over the graph; its estimate at a node adapts to

the smoothness in its localized neighborhood.

Under the sampling and recovery framework, we propose solving

following modified version of the GTF formulation GTF-S:

β̂ = argminβ∈Rn

1

2
‖y −Ψβ‖22 + λ‖∆(k+1)

β‖1, (4)

Remark 1. Note that we can use mixed piecewise penalties to

encourage different kinds of piecewise polynomial behavior by

stacking the graph difference matrices since we can transform

λ‖∆(l+1)‖1 + γ‖∆(m+1)‖1 as ‖∆‖1 where

∆ =

[
λ∆(l+1)

γ∆(m+1)

]

In the following exposition however, we only consider the basic graph

difference operator for a given k.

We solve this GTF-S formulation in (3) via the alternating direction

method of multipliers (ADMM) framework for solving separable



Fig. 2: Example of sampling a piecewise-constant (k=0) graph signal with 4 pieces on the Minnesota road graph with a random 5% of samples. From left

to right, we have the true signal, the noisy signal, the location of the samples, and the reconstructed signal. Noisy input signal SNR = 5dB, Reconstructed

signal SNR = 12.8dB

Fig. 3: Example of sampling a piecewise-linear (k=1) graph signal on the Minnesota road graph with a random 5% of samples. From left to right, we have

the true signal, the noisy signal, the location of the samples, and the reconstructed signal. Noisy input signal SNR = 5dB, Reconstructed signal SNR = 14.5dB

optimization problems [15]. Via a change of variable defining η =
∆(k+1)β, we can write the transformed problem:

β̂ = argminβ∈Rn

1

2
‖y −Ψβ‖22 + λ‖η‖1 s.t. η = ∆

(k+1)
β

and its corresponding Lagrangian as:

L(β,η,u) =
1

2
‖y −Ψβ‖22 + λ‖η‖1 + τ

2
‖∆(k+1)

β − η + u‖22
− τ

2
‖u‖22 (5)

where u is the Lagrangian multiplier, and τ the parameter. Algo-

rithm 1 shows the ADMM updates based on the Lagrangian in

(5). For an appropriately chosen τ , the algorithm converges in a

fixed number of iterations. In Fig. 2 and Fig. 3, we illustrate with

Algorithm 1 ADMM Optimization for GTF-S

1: Inputs: y,Ψ,∆(k+1), and parameters λ, τ
2: Initialize:

D ←∆(k+1), η ←Dβ, u←Dβ − η,

β ← y or βinit if given.
3: repeat

4: β ← (ΨTΨ+ τDTD)−1(τDT (η − u) +ΨTy)
5: for i ← 1 to length(Dβ) do

6: ηi ← proxρ([Dβ]i + ui;λ/τ)
7: ⊲ proxρ(t;α) = soft-thresholding operator on t with αρ
8: end for

9: u← u+Dβ − η

10: until termination

an example the sampling and recovery of a piecewise-constant and

piecewise-linear graph signal on the Minnesota road graph [16] with

the GTF-S framework.

A. Theoretical Analysis

We now present bounds on the error rate of the GTF-S fit

‖Ψ(β̂ − β⋆)‖2 that help elucidate the relationship between the

sample complexity (number of samples M needed for accurate

reconstruction) with respect to structural properties of the graph

and complexity of the boundary ‖∆(k+1)β‖1. For simplicity, let us

assume the graph is fully connected, that is there is only 1 connected

component, the dimension of the null space of ∆(k+1). Note that

if there were multiple connected components, the problem becomes

fully separable over each connected component.

Proposition 1. On a fully connected graph, we have

∆(k+1)†∆(k+1) = I − 1
N
J

Theorem 1 (Weak Consistency Error bound of the GTF-S mini-

mizer). Let β̂ to be the minimizer of (4), r be the number of rows

of ∆(k+1), ζ be the maximum ℓ2 norm of the columns of Ψ∆(k+1)†.

Set λ = σζ
√

2 log( r
δ
), then with probability at least 1−2δ, we have:

‖Ψ(β̂ − β
⋆)‖22 ≤ σ2

(
1 + 2

√
2 log(

1

δ
)
)
+ 4σζ

√
2 log(

r

δ
)‖∆(k+1)

β
⋆‖1

Proof. Proof omitted due to lack of space

Hence, the GTF-S fit is consistent if ‖∆(k+1)β⋆‖1 grows at a

rate slower than 1

σζ
√

log( r

δ
)
. From [17], we can show that ζ ≤

1/λmin(∆
(2))

k+1

2 , where λmin(∆
(2)) is the smallest nonzero eigen-

value of the graph Laplacian matrix ∆(2) and quantifies the algebraic

connectivity of the graph. We note that this result is consistent with

basic error rates for graph trend filtering [10] as M → N .

IV. ACTIVE SAMPLING

We expect localized behavior that may be hard to detect to hamper

the performance of passive sampling strategies. Consequently, in



this section, we seek to employ active sampling strategies when the

signal exhibits inhomogenous behavior over the graph and contains

discontinuities as in the case of piecewise-smooth signals. This gain

in performance can be measured both in terms of the error rates and

the sample complexity required to achieve a particular guarantee on

the error. In spirit, our work follows previous work that studied the

capabilities of passive and active sampling for recovering non-smooth

functions from samples; the difference is that we consider a discrete

setting and deal with irregular structures. For a smooth function, it has

been shown that active sampling, experimentally designed sampling

and uniform sampling have the same performance from a statistical

perspective. For brevity, we only consider the piecewise-constant

(k = 0) setting here, however the ideas and strategies presented

here can easily be extended to general k. Given a sampling budget

of M samples (assume for simplicity that M is even), we employ a

two-step approach based in part on the active sampling procedures

discussed in [18].

• In the first step, called the preview step, we randomly sample

M/2 samples uniformly distributed over the graph with Ψ̃ and

use the GTF-S estimator (4) of the signal to get the rough

estimate β̃.

• In the second step, called the refinement step, we select the

remaining half of our budget M/2 samples, near the perceived

locations of the boundaries estimated in the preview step.

Particularly, in this step we define a probability distribution over

the nodes such that πi ∝
∑

j∈N (i) |β̃i−β̃j | whereN (i) denotes

the neighborhood of i, the nodes it shares an edge with. We

sample M/2 nodes with replacement such that in each of the

M/2 rounds, the probability of the i-th node being selected is

proportional to πi. Consequently, at the end of this process we

can construct a randomized sampling set represented by Ψ̂ such

that the samples are largely concentrated in the vicinity of the

boundary or discontinuities. We then use the GTF-S estimator

(4) with the full set of M samples with sampling operator

ΨT =
[
Ψ̃T |Ψ̂T

]
to get our final estimate β̂.

This prescribed strategy is a natural way to take advantage of

the idea that estimating the signal near the boundary is key to

obtaining better reconstruction performance. We consider the even

split of the sampling budget between the preview and refinement

step only for simplicity. In addition, instead of a two-step procedure,

one can reprise this idea, performing multiple refinement steps where

in each step we acquire a new estimate of the boundary. However,

for simplicity, we only consider the two-step procedure here.

V. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments on the syn-

thetic piecewise-constant and piecewise-linear graph signals on the

Minnesota road network with N = 2642 nodes and m = 3304 edges

illustrated in Figures 2 and 3. We construct the piecewise-constant

graph signal with 4 pieces by randomly choosing the location of 4

seed nodes and connecting every node to the closest seed by shortest

path distance. We construct the piecewise-linear signal by randomly

choosing the location of 50 discontinuities and solving the Poisson

equation ∆(2)β = b where the non-zero entries in sparse vector b

correspond to the discontinuities. We tune the hyperparameters ρ and

τ in Algorithm 1 by grid-search for the below experiments.

A. Passive Sampling

In this section, we study the performance of our proposed algorithm

for different sampling densities and noise settings. We inject white

gaussian noise such that the noisy signal has a specified SNR

(5dB,10dB,15dB) before uniformly randomly sampling the signal and

recovering it with Algorithm 1. The results are illustrated in Figure 4.
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Fig. 4: Reconstructed signal SNR versus sampling density for different input

SNR settings for both a piecewise-constant and a piecewise-linear graph

signal

We see that we can only accurately reconstruct at moderately

higher sampling densities. Note that we can reconstruct a piecewise-

linear signal with better accuracy than a piecewise-constant signal

with the same sample budget since the piecewise-linear graph signal

is more homogenous and its key characteristics are less localized.

B. Active Sampling

We repeat the same experiment as that in Section V-A for the

5dB input SNR setting but additionally employ the active sampling

strategy described in Section IV. The results are illustrated in

Figure 5. Note that for piecewise-linear signals, in the refinement

step, we define πi ∝ |β̃i −
1
|Ni|

∑
j∈Ni

β̃j |.
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Fig. 5: Reconstructed signal SNR versus sampling density for passive and

active sampling settings for both a piecewise-constant and a piecewise-linear

graph signals

We see that for both piecewise-constant and piecewise-linear graph

signals, active sampling consistently and significantly outperforms

passive sampling for the same sampling budget. This performance

gain is particularly substantial at lower sampling densities.

VI. CONCLUSION

In this work, we studied the sampling and recovery of piecewise

smooth graph signals. Via an extension of the graph trend filtering

framework, we presented an algorithm that allows us to efficiently

sample and reconstruct such signals . Further, we developed an

active sampling strategy that helps to better detect the location of

the boundaries and discontinuities. We then presented numerical

experiments on a real-world graph to test the performance of our

sampling strategies and recovery algorithms.
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