Connexion
Mot de passe oublié ?
Créer un compte
Accueil
Programme
▼
Planning
Articles (par auteur)
Article (par type et titre)
Liste des participants
SampTA 2019
▼
A propos de Sampta
Contact
Comités
Sponsors
Dates importantes
Appel à contribution
Instruction pour auteurs
Soumission sur EDAS
Informations pratiques
▼
Informations pratiques
Conference dinner
Hôtels
Accès
Frais (inscription...)
Comment s'inscrire et payer
Contact
Inscription
Programme > Planning
Semaine
Lun. 08
Mar. 09
Mer. 10
Jeu. 11
Ven. 12
Liste
Lun. 08
Mar. 09
Mer. 10
Jeu. 11
Ven. 12
08:00
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00
Inscription - Café & croissant
8:00 - 9:15 (1h15)
Inscription - Café & croissant
Accueil
9:15 - 9:25 (10min)
Accueil
A22 Amphi Wegener
Guy Melançon
Signal processing on graphs for applications in machine learning and network science
9:25 - 10:25 (1h)
Signal processing on graphs for applications in machine learning and network science
A22 Amphi Wegener
Pierre Vandergheynst
Compressed sensing and low rank matrix recovery (invited)
Analyse de Gabor
10:25 - 12:30 (2h05)
Compressed sensing and low rank matrix recovery (invited)
A22 Amphi Wegener
Felix Kramer & Richard Kueng
›
Matrix Completion with Selective Sampling
-
10:25-10:50 (25min)
›
Entropy Estimates on Tensor Products of Banach Spaces and Applications to Low-Rank Recovery
-
10:50-11:15 (25min)
›
New Algorithms and Improved Guarantees for One-Bit Compressed Sensing on Manifolds
- Rayan Saab, University of California, Sans Diego
11:15-11:40 (25min)
›
Completion of Structured Low-Rank Matrices via Iteratively Reweighted Least Squares
- Christian Kümmerle, TU Munich
11:40-12:05 (25min)
›
Robust Recovery of Sparse Non-negative Weights from Mixtures of Positive-Semidefinite Matrices
- Peter Jung, TU Berlin
12:05-12:30 (25min)
10:25 - 12:30 (2h05)
Analyse de Gabor
A22 Amphi Edison
Volker Pohl
›
Signal transmission through an unidentified channel
- Dae Gwan Lee, Katholische Universitat Eichstatt-Ingolstadt
10:25-10:50 (25min)
›
A quantitative Balian-Low theorem for subspaces
- Andrei Caragea, Katholische Universitaet Eichstaett-Ingolstadt
10:50-11:15 (25min)
›
Time-Frequency Shift Invariance of Gabor Spaces
- Friedrich Philipp, Katholische Universitaet Eichstaett-Ingolstadt
11:15-11:40 (25min)
›
Adaptive Frames from Quilted Local Time-Frequency Systems
- Gino Angelo Velasco, University of the Philippines, Diliman
11:40-12:05 (25min)
›
On the smoothness of dual windows for Gabor windows supported on [-1; 1]
- Kamilla H. Nielsen, Technical University of Denmark [Lyngby]
12:05-12:30 (25min)
Déjeuner
12:30 - 14:00 (1h30)
Déjeuner
Sharpness, Restart and Compressed Sensing Performance
14:00 - 15:00 (1h)
Sharpness, Restart and Compressed Sensing Performance
A22 Amphi Wegener
Alexandre d'Aspremont
https://sampta2019.sciencesconf.org/data/program/Aspremont.pdf
Frame theory (invited)
Reconstruction de Phase
15:00 - 16:15 (1h15)
Frame theory (invited)
A22 Amphi Wegener
John Jasper & Dustin Mixon
›
Equi-isoclinic subspaces from difference sets
- Matthew Fickus, Air Force Intitute of Technology
15:00-15:25 (25min)
›
Exact Line Packings from Numerical Solutions
-
15:25-15:50 (25min)
›
2- and 3-Covariant Equiangular Tight Frames
- Emily King, Bremmen U.
15:50-16:15 (25min)
15:00 - 16:15 (1h15)
Reconstruction de Phase
A22 Amphi Edison
Gert Tamberg
›
Conjugate Phase Retrieval in Paley-Wiener Space
- Eric S. Weber, Iowa State University
15:00-15:25 (25min)
›
Phase Retrieval for Wide Band Signals
- Rolando Perez III, Institut de Mathématiques de Bordeaux
15:25-15:50 (25min)
›
Dual-Reference Design for Holographic Phase Retrieval
- David A. Barmherzig, Stanford University
15:50-16:15 (25min)
Pause café
16:15 - 16:45 (30min)
Pause café
Frame theory (invited)
Méthodes probabilistes
16:45 - 17:35 (50min)
Frame theory (invited)
A22 Amphi Wegener
John Jasper & Dustin Mixon
›
The Zak transform and representations induced from characters of an abelian subgroup
- Joseph W. Iverson, Iowa State
16:45-17:10 (25min)
›
A Delsarte-Style Proof of the Bukh-Cox Bound
-
17:10-17:35 (25min)
16:45 - 18:00 (1h15)
Méthodes probabilistes
A22 Amphi Edison
Holger Rauhut
›
Non-Gaussian Random Matrices on Sets: Optimal Tail Dependence and Applications
- Halyun Jeong, University of British Columbia
16:45-17:10 (25min)
›
Fast Multitaper Spectral Estimation
- Santhosh Karnik, Georgia Tech
17:10-17:35 (25min)
Metric repair on manifolds with holes
8:30 - 9:30 (1h)
Metric repair on manifolds with holes
A22 Amphi Wegener
Anna Gilbert (University of Michigan)
https://sampta2019.sciencesconf.org/data/program/Gilbert_1.pdf
Pause café
9:30 - 10:00 (30min)
Pause café
Time-frequency analysis (invited)
Echantillonage compressé
Deep Learning
10:05 - 12:10 (2h05)
Time-frequency analysis (invited)
A9 Amphi 1
Antti Haimi & José-Luis Romero
›
The Strohmer and Beaver Conjecture for Gaussian Gabor Systems - A Deep Mathematical Problem (?)
- Markus Faulhuber, University of Vienna [Vienna]
10:05-10:30 (25min)
›
Scaling limits in planar eigenvalue ensembles
- Yacin Ameur, Lund University
10:30-10:55 (25min)
›
A correspondence between zeros of time-frequency transforms and Gaussian analytic functions
- Rémi Bardenet, CNRS, Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
10:55-11:20 (25min)
›
The Diamond ensemble: a well distributed family of points on S2
-
11:20-11:45 (25min)
›
Filtering the Continuous Wavelet Transform Using Hyperbolic Triangulations
- Günther Koliander, University of Vienna [Vienna]
11:45-12:10 (25min)
10:05 - 12:10 (2h05)
Echantillonage compressé
A9 amphi 2
Simon Foucart
›
Multiplication-free coordinate descent iteration for l1-regularized least squares
- Nguyen T. Thao, City College New York
10:05-10:30 (25min)
›
Random Gabor Multipliers and Compressive Sensing
- Georg Tauböck, Austrian Accademy of Science
10:30-10:55 (25min)
›
Parameter Instability Regimes in Sparse Proximal Denoising Programs
- Aaron Berk, British Columbia
10:55-11:20 (25min)
›
Phase transition for eigenvalues and recovery of rank one matrices
- Enrico Au-Yeung, De Paul
11:20-10:45 (-1h-35)
›
Sparse synthesis regularization with deep neural networks
- Daniel Obmann, University of Innsbruck
11:45-12:10 (25min)
10:05 - 12:10 (2h05)
Deep Learning
A9 Amphi 3
Mahya Ghandehari
›
Projection-Based 2.5D U-net Architecture for Fast Volumetric Segmentation
- Christoph H. Angermann, University of Innsbruck
10:05-10:30 (25min)
›
Unfavorable structural properties of the set of neural networks with fixed architecture
- Mones Raslan, Technishe Universität Berlin
10:30-10:55 (25min)
›
Towards a Regularity Theory for ReLU Networks - Chain Rule and Global Error Estimates
-
10:55-11:20 (25min)
›
A Rate-Distortion Framework for Explaining Deep Neural Network Decisions
- Stephan Wäldchen, TU Berlin
11:20-11:45 (25min)
›
Deep-Sparse Array Cognitive Radar
- Satish Mulleti, Weizmann Institute of Science
11:45-12:10 (25min)
déjeuner
12:10 - 13:45 (1h35)
déjeuner
Combinatorial compressed sensing with expanders
13:45 - 14:45 (1h)
Combinatorial compressed sensing with expanders
A22 Amphi Wegener
Bubacarr Bah
https://sampta2019.sciencesconf.org/data/program/Bah.pdf
Deep learning (invited)
Théorie des "Frames"
Reconstruction de Phase
14:55 - 16:10 (1h15)
Deep learning (invited)
A9 Amphi 1
Misha Belkin & Mahdi Soltanolkotabi
›
Reconciling modern machine learning practice and the classical bias-variance trade-off
-
14:55-15:20 (25min)
›
Overparameterized Nonlinear Optimization with Applications to Neural Nets
- Samet Oymak, University of California, Riverside
15:20-15:45 (25min)
›
General Bounds for 1-Layer ReLU approximation
- Bolton R. Bailey, University of Illinois at Urbana-Champaign [Urbana]
15:45-16:10 (25min)
14:55 - 16:10 (1h15)
Théorie des "Frames"
A9 amphi 2
Ole Christensen
›
Banach frames and atomic decompositions in the space of bounded operators on Hilbert spaces
- Peter Balazs, Austrian Academy of Sciences
14:55-15:20 (25min)
›
Frames by Iterations in Shift-invariant Spaces
- Diana Carbajal, Universidad de Buenos Aires [Buenos Aires]
15:20-15:45 (25min)
›
Frame representations via suborbits of bounded operators
- Ole Christensen, Technical University of Denmark
15:45-16:10 (25min)
14:55 - 16:10 (1h15)
Reconstruction de Phase
A9 Amphi 3
Jo Lakey
›
Phase Estimation from Noisy Data with Gaps
- Yitong Huang, Dartmouth College
14:55-15:20 (25min)
›
Phase retrieval from local correlation measurements with fixed shift length
-
15:20-15:45 (25min)
›
Ill-conditionedness of discrete Gabor phase retrieval and a possible remedy
- Matthias Wellershoff, ETH Zurich
15:45-16:10 (25min)
Deep learning (invited)
Quantisation
Théorie des "Frames"
16:20 - 17:10 (50min)
Deep learning (invited)
A9 Amphi 1
Misha Belkin & Mahdi Soltanolkotabi
›
Generalization in deep nets: an empirical perspective
- Tom Goldstein, University of Maryland
16:20-16:45 (25min)
›
Neuron birth-death dynamics accelerates gradient descent and converges asymptotically
- Joan Bruna, Courant Institute of Mathematical Sciences [New York]
16:45-17:10 (25min)
16:20 - 17:35 (1h15)
Quantisation
A9 Amphi 3
Ozgur Yilmaz
›
Higher order 1-bit Sigma-Delta modulation on a circle
-
16:20-16:45 (25min)
›
One-Bit Compressed Sensing Using Smooth Measure of l0 Norm
- Arash Amini, Sharif University of Technology
16:45-17:10 (25min)
›
Monte Carlo wavelets: a randomized approach to frame discretization
- Zeljko Kereta, Simula Research Lab
17:10-17:35 (25min)
16:20 - 17:35 (1h15)
Théorie des "Frames"
A9 amphi 2
Ole Christensen
›
Sum-of-Squares Optimization and the Sparsity Structure of Equiangular Tight Frames
- Dmitriy Kunisky, Courant Institute of Mathematical Sciences [New York]
16:20-16:45 (25min)
›
Frame Potentials and Orthogonal Vectors
- Josiah Park, Georgia Tech
16:45-17:10 (25min)
›
Compactly Supported Tensor Product Complex Tight Framelets with Directionality
- Xiaosheng Zhuang, City University Hong Kong
17:10-17:35 (25min)
Poster & Welcome Party
17:45 - 20:00 (2h15)
Poster & Welcome Party
Haut Carré
›
A directional periodic uncertainty principle
- Elena Lebedeva, Saint-Petersburg State University
18:00-20:00 (2h)
›
A Joint Deep Learning Approach for Automated Liver and Tumor Segmentation
- Nadja Gruber, University of Innsbruck
18:00-20:00 (2h)
›
Adapted Decimation on Finite Frames for Arbitrary Orders of Sigma-Delta Quantization
- Kung-Ching Lin, University of Maryland
18:00-20:00 (2h)
›
Adaptive Rate EEG Signal Processing for Epileptic Seizure Detection
- Saeed Qaisar, Effat University
18:00-20:00 (2h)
›
Brain Activity Estimation using EEG-only Recordings Calibrated with joint EEG-fMRI Recordings using Compressive Sensing
- Ataei Ali, Sharif University of Technology
18:00-20:00 (2h)
›
Compressed Diffusion
- Scott Gigante, Computational Biology and Bioinformatics Program, Yale University
18:00-20:00 (2h)
›
Compressive Sampling and Least Squares based Reconstruction of Correlated Signals
- Ali Ahmed, Information Technology University
18:00-20:00 (2h)
›
Construction of Non-Uniform Parseval Wavelet Frames for L^2(R) via UEP
- Hari Hari Krishan Malhotra, University of Dehli
18:00-20:00 (2h)
›
Deterministic matrices with a restricted isometry property for partially structured sparse signals
- Alihan Kaplan, TU Munich
18:00-20:00 (2h)
›
Frame Bounds for Gabor Frames in Finite Dimensions
- Palina Salanevich, UCLA
18:00-20:00 (2h)
›
Lagrange interpolation of bandlimited functions on slowly increasing sequences
- Louie John VALLEJO, Institute of Mathematics, University of the Philippines - Diliman
18:00-20:00 (2h)
›
Near optimal polynomial regression on norming meshes
- Marco Vianello, University of Padova
18:00-20:00 (2h)
›
Network Tomography in Hyperbolic Space
- Stephen D. Casey, American University Washington
18:00-20:00 (2h)
›
Nonuniform Sampling of Echoes of Light
- Miguel Heredia Conde, University of Siegen
18:00-20:00 (2h)
›
NP-hardness of L0 minimization problems: revision and extension to the non-negative setting
- Thi-Thanh Nguyen, Université de Lorraine
18:00-20:00 (2h)
›
On Column-Row Matrix Approximations
- Keaton Hamm, University of Arizona
18:00-20:00 (2h)
›
On Inferences from Completed Data
- Jamie Haddock, UCLA
18:00-20:00 (2h)
›
On Kantorovich-type sampling operators
-
18:00-20:00 (2h)
›
Passive and Active Sampling for Piecewise-Smooth Graph Signals
- Rohan Varma, Carnegie Mellon University
18:00-20:00 (2h)
›
Random Diffusion Representations
- Moshe Salhov, Tel Aviv University
18:00-20:00 (2h)
›
Reconstructing high-dimensional Hilbert-valued functions via compressed sensing
- Nicholas C. Dexter, Simon Fraser University and PIMS
18:00-20:00 (2h)
›
Recovery of a class of Binary Images from Fourier Samples
-
18:00-20:00 (2h)
›
Sampling and Recovery of Binary Shapes via Low-Rank structures
- Arash Amini, Sharif University of Technology
18:00-20:00 (2h)
›
Unitarization and Inversion Formula for the Radon Transform for Hyperbolic Motions
- Francesca Bartolucci, Università di Genova
18:00-20:00 (2h)
Approximation by crystal invariant subspaces
8:30 - 9:30 (1h)
Approximation by crystal invariant subspaces
A22 Amphi Wegener
Ursula Molter
https://sampta2019.sciencesconf.org/data/program/Molter.pdf
Pause café
9:30 - 10:00 (30min)
Pause café
Phase Retrieval (invited)
Traitement du signal non-euclidéen (graphes, variétés,...)
10:05 - 12:10 (2h05)
Phase Retrieval (invited)
A9 Amphi 1
Tom Goldstein & Irène Waldspurger
›
3D Phaseless Imaging at Nano-scale: Challenges and Possible Solutions
- Mahdi Soltanolkotabi, University of Soutern California
10:05-10:30 (25min)
›
Optimally Sample-Efficient Phase Retrieval with Deep Generative Models
- Oscar Leong, Rice University
10:30-10:55 (25min)
›
The Cramer-Rao Lower Bound in the Phase Retrieval Problem
- Radu Balan, University of Maryland
10:55-11:20 (25min)
›
Stability of Phase Retrieval Problem
- Palina Salanevich, UCLA
11:20-11:45 (25min)
›
PhasePack: A Phase Retrieval Library
- Tom Goldstein, University of Maryland
11:45-12:10 (25min)
10:05 - 12:10 (2h05)
Traitement du signal non-euclidéen (graphes, variétés,...)
A9 amphi 2
Elena Lebedeva
›
Generalized Sampling on Graphs With A Subspace Prior
- Yuichi Tanaka, Tokyo University of Agriculture and Technology
10:05-10:30 (25min)
›
Numerical computation of eigenspaces of spatio-spectral limiting on hypercubes
- Joseph Lakey, New Mexico State University
10:30-10:55 (25min)
›
On the Transferability of Spectral Graph Filters
- Ron Levie, TU Berlin
10:55-11:20 (25min)
›
Sampling on Hyperbolic Surfaces
- Stephen D. Casey, American University Washington
11:20-11:45 (25min)
›
Random Sampling for Bandlimited Signals on Product Graphs
- Rohan Varma, Carnegie Mellon University
11:45-12:10 (25min)
Déjeuner
12:10 - 14:00 (1h50)
Déjeuner
Excursion
14:00 - 20:00 (6h)
Excursion
Bagging the Peaks: Matrix and Tensor Factorization with Unimodal Constraints
8:30 - 9:30 (1h)
Bagging the Peaks: Matrix and Tensor Factorization with Unimodal Constraints
A22 Amphi Wegener
Urbashi Mitra
https://sampta2019.sciencesconf.org/data/program/Mitra.pdf
Pause café
9:30 - 10:00 (30min)
Pause café
Missing data imputation (invited)
Echantillonage et analyse de Fourier
10:05 - 12:10 (2h05)
Missing data imputation (invited)
A9 Amphi 1
Laura Balzano & Rod Little
›
Comparison of Imputation Methods for Race and Ethnic Information in Administrative Health Data
- Ofer Harel, University of Connecticut
10:05-10:30 (25min)
›
Adaptive sequential regression imputation methods using machine learning techniques
- Trivellore E. Raghunathan, University of Michigan
10:30-10:55 (25min)
›
Tractable Learning of Sparsely Used Dictionaries from Incomplete Samples
-
10:55-11:20 (25min)
›
Missing Data in Machine Learning
- Laura Balzano, University of Michigan
11:20-11:35 (15min)
›
Missing Data in Classical Statistics
- Rod Little, University of Michigan
11:35-11:50 (15min)
›
Discussion
- Don Rubin, Harvard University
11:50-12:10 (20min)
10:05 - 12:10 (2h05)
Echantillonage et analyse de Fourier
A9 amphi 2
Ahmed Zayed
›
Sampling over spiraling curves
- Felipe Negreira, Institut de Mathématiques de Bordeaux
10:05-10:30 (25min)
›
Time encoding and perfect recovery of non-bandlimited signals with an integrate-and-fire system
- Roxana Alexandru, Imperial College London
10:30-10:55 (25min)
›
Optimal Spline Generators for Derivative Sampling
- Shayan Aziznejad, EPFL
10:55-11:20 (25min)
›
On cosine operator function framework of windowed Shannon sampling operators
- Andi Kivinukk, Tallinn University
11:20-11:45 (25min)
›
On Identifiability in Unlimited Sampling
- Felix Krahmer, TU Munich
11:45-12:10 (25min)
Déjeuner
12:10 - 13:45 (1h35)
Déjeuner
Lyapunov's theorem and sampling of continuous frames
13:45 - 14:45 (1h)
Lyapunov's theorem and sampling of continuous frames
A22 Amphi Wegener
Marcin Bownik
https://sampta2019.sciencesconf.org/data/program/Bownik_1.pdf
Graph signal processing (invited)
Wavelets, Shearlets…
Super-Résolution
14:50 - 16:05 (1h15)
Graph signal processing (invited)
A9 Amphi 1
Karlheinz Gröchenig & Isaac Pesenson
›
Sampling and reconstruction of graph signals: An overview of recent graph signal processing results
- António G. Marques, Universidad Rey Juan Carlos
14:50-15:15 (25min)
›
Iterative Chebyshev Polynomial Algorithm for Signal Denoising on Graphs
-
15:15-15:40 (25min)
›
A non-commutative viewpoint on graph signal processing
- Mahya Ghandehari, University of Delaware
15:40-16:05 (25min)
14:50 - 16:05 (1h15)
Wavelets, Shearlets…
A9 amphi 2
Andi Kivinukk
›
Higher-dimensional wavelets and the Douglas-Rachford algorithm
- Jeffrey Hogan, University of Newcastle
14:50-15:15 (25min)
›
Analytic and directional wavelet packets
- Valery Zheludev, Tel Aviv University
15:15-15:40 (25min)
›
Optimization in the construction of nearly cardinal and nearly symmetric wavelets
- Neil Dizon, University of Newcastle
15:40-16:05 (25min)
14:50 - 16:05 (1h15)
Super-Résolution
A9 Amphi 3
Sinan Gunturk
›
The dual approach to non-negative super-resolution: impact on primal reconstruction accuracy
- Bogdan Toader, Oxford University, The Alan Turing Institute
14:50-15:15 (25min)
›
Conditioning of restricted Fourier matrices and super-resolution of MUSIC
- Wenjing Liao, Georgia Tech
15:15-15:40 (25min)
›
Iterative Discretization of Optimization Problems Related to Superresolution
- Axel Flinth, Institut de Mathématiques de Toulouse UMR5219
15:40-16:05 (25min)
Pause café
16:05 - 16:30 (25min)
Pause café
Graph signal processing (invited)
Wavelets, Shearlets…
Echantillonage et analyse de Fourier
16:30 - 18:10 (1h40)
Graph signal processing (invited)
A9 Amphi 1
Karlheinz Gröchenig & Isaac Pesenson
›
Clustering on Dynamic Graphs based on Total Variation
- Peter Berger, TU Vienna
16:30-16:55 (25min)
›
Enabling Prediction via Multi-Layer Graph Inference and Sampling
- Stefania Sardellitti, Sapienza University [Rome]
16:55-17:20 (25min)
›
Blue-Noise Sampling of Signals on Graphs
- Alejandro Parada, University of Delaware
17:20-17:45 (25min)
›
Average sampling, average splines and Poincare inequality on combinatorial graphs
- Isaac Pesenson, Temple University
17:45-18:10 (25min)
16:30 - 17:45 (1h15)
Wavelets, Shearlets…
A9 amphi 2
Andi Kivinukk
›
Analysis of shearlet coorbit spaces in arbitrary dimensions using coarse geometry
- René Koch, RWTH Aachen University
16:30-16:55 (25min)
›
Trace Result of Shearlet Coorbit Spaces on Lines
- Qaiser Jahan, Indian Institute of Technology Mandi
16:55-17:20 (25min)
16:30 - 17:45 (1h15)
Echantillonage et analyse de Fourier
A9 Amphi 3
Arash Amini
›
On the Reconstruction of a Class of Signals Bandlimited to a Disc
- Ahmed Zayed, DePaul University, Chicago
16:30-16:55 (25min)
›
The Solvability Complexity Index of Sampling-based Hilbert Transform Approximations
- Volker Pohl, TU Munich
16:55-17:20 (25min)
›
The Convolution Word is Tied to the Exponential Kernel Transforms. What is a Parallel Expression for the Other Transforms?
- Abdul Jerri, Clarkson University
17:20-17:45 (25min)
Diner de conférence au "Café du port"
19:30 - 23:00 (3h30)
Diner de conférence au "Café du port"
Robust and efficient identification of neural networks
8:30 - 9:30 (1h)
Robust and efficient identification of neural networks
A22 Amphi Wegener
Massimo Fornasier
https://sampta2019.sciencesconf.org/data/program/Fornasier.pdf
Pause café
9:30 - 10:00 (30min)
Pause café
Quantization (invited)
Analyse de Fourier
10:00 - 12:05 (2h05)
Quantization (invited)
A22 Amphi Wegener
Sjoerd Dirksen & Rayan Saab
›
Robust One-bit Compressed Sensing With Manifold Data
-
10:00-10:25 (25min)
›
One-Bit Sensing of Low-Rank and Bisparse Matrices
- Simon Foucart, Texas A&M
10:25-10:50 (25min)
›
Robust 1-Bit Compressed Sensing via Hinge Loss Minimization
- Alexander Stollenwerk, TU Aachen
10:50-11:15 (25min)
›
High-performance quantization for spectral super-resolution
- Sinan Gunturk, New York University
11:15-11:40 (25min)
›
On one-stage recovery for ΣΔ-quantized compressed sensing
- Ozgur Yilmaz, University of British Columbia
11:40-12:05 (25min)
10:00 - 12:05 (2h05)
Analyse de Fourier
A22 Amphi Edison
Jeff Hogan
›
Riesz bases of exponentials for partitions of intervals
-
10:00-10:25 (25min)
›
Computability of the Fourier Transform and ZFC
-
10:25-10:50 (25min)
›
Rearranged Fourier Series and Generalizations to Non-Commutative Groups
- Armenak Petrosyan, Oak Ridge National Laboratory
10:50-11:15 (25min)
›
Deterministic guarantees for L1 -reconstruction: A large sieve approach with geometric flexibility
- Michael Speckbacher, Institut de Mathématiques de Bordeaux
11:15-11:40 (25min)
›
A Clifford Construction of Multidimensional Prolate Spheroidal Wave Functions
- Hamed Baghal Ghaffari, University of Newcastle
11:40-12:05 (25min)
Déjeuner
12:05 - 13:30 (1h25)
Déjeuner
Deep Learning
Problèmes inverses
13:30 - 14:20 (50min)
Deep Learning
A22 Amphi Wegener
Radu Balan
›
Approximation in Lp(μ) with deep ReLU neural networks
- Felix Voigtlaender, Katholische Universitat Eichstatt-Ingolstadt
13:30-13:55 (25min)
›
Modeling Global Dynamics from Local Snapshots with Deep Generative Neural Networks
- Scott Gigante, Yale University
13:55-14:20 (25min)
13:30 - 14:20 (50min)
Problèmes inverses
A22 Amphi Edison
Steven Casey
›
Convergence Rates for Hölder-Windows in Filtered Back Projection
- Matthias Beckmann, University of Hambourg
13:30-13:55 (25min)
›
Dynamical Sampling with a Burst-like Forcing Term
- Ilya Krishtal, Northern Illinois University
13:55-14:20 (25min)
Learning from moments - Large-scale learning with the memory of a goldfish
14:30 - 15:35 (1h05)
Learning from moments - Large-scale learning with the memory of a goldfish
A22 Amphi Wegener
Rémi Gribonval (and closing)
https://sampta2019.sciencesconf.org/data/program/Gribonval.pdf
Personnes connectées :
35
Chargement...